A fast method for solving second order boundary value Volterra integro-differential equations

被引:13
作者
Shaw, RE [1 ]
Garey, LE [1 ]
机构
[1] Univ New Brunswick, St John, NB E2L 4L5, Canada
关键词
algorithm efficiency; difference methods; Volterra integro-differential equations; TRIDIAGONAL SYSTEMS;
D O I
10.1080/00207169708804602
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using finite difference methods to solve nonlinear Volterra integro-differential equations with two point boundary conditions give rise to a symmetric banded coefficient matrix. A typical method for solving systems of this form involves the LU method. In this paper the original system is modified to allow the implementation of a special fast algorithm for solving tridiagonal systems. Numerical examples are given to compare an efficient form of the LU method with the new approach.
引用
收藏
页码:121 / 129
页数:9
相关论文
共 8 条
[1]  
Chawla M. M., 1980, BIT (Nordisk Tidskrift for Informationsbehandling), V20, P511, DOI 10.1007/BF01933644
[2]   ON THE SOLUTION OF CIRCULANT LINEAR-SYSTEMS [J].
CHEN, MK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (03) :668-683
[3]  
Hager WilliamW., 1988, Applied numerical linear algebra
[4]  
Henrici P., 1962, Discrete Variable Methods in Ordinary Differential Equations
[5]   A NEW METHOD FOR SOLVING SYMMETRICAL CIRCULANT TRIDIAGONAL SYSTEMS OF LINEAR-EQUATIONS [J].
ROJO, O .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1990, 20 (12) :61-67
[6]  
SHAW RE, 1995, C NUMERANTIUM, V106, P193
[7]  
SHAW RE, 1994, THESIS U NEW BRUNSWI
[8]   A FAST ALGORITHM FOR SOLVING SPECIAL TRIDIAGONAL SYSTEMS [J].
YAN, WM ;
CHUNG, KL .
COMPUTING, 1994, 52 (02) :203-211