Acid protease production by solid-state fermentation using Aspergillus oryzae MTCC 5341: optimization of process parameters

被引:89
作者
Vishwanatha, K. S. [1 ]
Rao, A. G. Appu [1 ]
Singh, Sridevi Annapurna [1 ]
机构
[1] CSIR, Constituent Lab, Cent Food Technol Res Inst, Dept Prot Chem & Technol, Mysore 570020, Karnataka, India
关键词
Acid protease; Solid-state fermentation; Aspergillus oryzae; Media optimization; STATISTICAL EXPERIMENTAL-DESIGN; ALKALINE PROTEASE; EXTRACELLULAR PROTEASE; RESPONSE-SURFACE; PURIFICATION; NIGER; PROTEINASES; FISCHERI; FORMS;
D O I
10.1007/s10295-009-0654-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aspergillus oryzae MTCC 5341, when grown on wheat bran as substrate, produces several extracellular acid proteases. Production of the major acid protease (constituting 34% of the total) by solid-state fermentation is optimized. Optimum operating conditions obtained are determined as pH 5, temperature of incubation of 30A degrees C, defatted soy flour addition of 4%, and fermentation time of 120 h, resulting in acid protease production of 8.64 x 10(5) U/g bran. Response-surface methodology is used to generate a predictive model of the combined effects of independent variables such as, pH, temperature, defatted soy flour addition, and fermentation time. The statistical design indicates that all four independent variables have significant effects on acid protease production. Optimum factor levels are pH 5.4, incubation temperature of 31A degrees C, 4.4% defatted soy flour addition, and fermentation time of 123 h to yield a maximum activity of 8.93 x 10(5) U/g bran. Evaluation experiments, carried out to verify the predictions, reveal that A. oryzae produces 8.47 x 10(5) U/g bran, which corresponds to 94.8% of the predicted value. This is the highest acid protease activity reported so far, wherein the fungus produces four times higher activity than previously reported [J Bacteriol 130(1): 48-56, 1977].
引用
收藏
页码:129 / 138
页数:10
相关论文
共 34 条
[1]   Optimization of alkaline protease production from Shewanella oneidensis MR-1 by response surface methodology [J].
Anbu, Periasamy ;
Annadurai, Gurusamy ;
Lee, Jiunn-Fwu ;
Hur, Byung-Ki .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2009, 84 (01) :54-62
[2]  
Chakraborty R, 1995, J MICROBIAL BIOTECH, V10, P17
[3]   Lighting heat gain parameters: Experimental method (RP-1282) [J].
Chantrasrisalai, Chanvit ;
Fisher, Daniel E. .
HVAC&R RESEARCH, 2007, 13 (02) :283-303
[4]   Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp RGR-14 [J].
Chauhan, B ;
Gupta, R .
PROCESS BIOCHEMISTRY, 2004, 39 (12) :2115-2122
[5]   Chitinase production in solid-state fermentation by Enterobacter sp NRG4 using statistical experimental design [J].
Dahiya, N ;
Tewari, R ;
Tiwari, RP ;
Hoondal, GS .
CURRENT MICROBIOLOGY, 2005, 51 (04) :222-228
[6]  
DATTA A, 1992, J BIOL CHEM, V267, P728
[7]   ASPERGILLUS-ORYZAE ACID PROTEINASE - PURIFICATION AND PROPERTIES, AND FORMATION OF PI-CHYMOTRYPSIN [J].
DAVIDSON, R ;
GERTLER, A ;
HOFMANN, T .
BIOCHEMICAL JOURNAL, 1975, 147 (01) :45-53
[8]   Optimization of culture parameters for extracellular protease production from a newly isolated Pseudomonas sp using response surface and artificial neural network models [J].
Dutta, JR ;
Dutta, PK ;
Banerjee, R .
PROCESS BIOCHEMISTRY, 2004, 39 (12) :2193-2198
[9]   Box-Behnken design: An alternative for the optimization of analytical methods [J].
Ferreira, S. L. C. ;
Bruns, R. E. ;
Ferreira, H. S. ;
Matos, G. D. ;
David, J. M. ;
Brandao, G. C. ;
da Silva, E. G. P. ;
Portugal, L. A. ;
dos Reis, P. S. ;
Souza, A. S. ;
dos Santos, W. N. L. .
ANALYTICA CHIMICA ACTA, 2007, 597 (02) :179-186
[10]   Characterization and stability of proteases from Penicillium sp produced by solid-state fermentation [J].
Germano, S ;
Pandey, A ;
Osaku, CA ;
Rocha, SN ;
Soccol, CR .
ENZYME AND MICROBIAL TECHNOLOGY, 2003, 32 (02) :246-251