Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high-energy cathode for aluminum batteries

被引:63
作者
Du, Yiqun [1 ]
Zhang, Boya [2 ]
Zhang, Wenyang [1 ]
Jin, Huixin [1 ]
Qin, Jingyu [1 ]
Wan, Jiaqi [2 ]
Zhang, Jianxin [1 ]
Chen, Guowen [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Mat Sci & Engn, Qingdao 266042, Peoples R China
关键词
Bismuth telluride; Antimony telluride; Heterojunction; Cathode materials; Aluminum batteries; AL3+ STORAGE MECHANISM; PERFORMANCE; INTERCALATION; COMPOSITES; MXENE;
D O I
10.1016/j.ensm.2021.03.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aluminum batteries (RABs) have been regarded as a low-cost and safe candidate for electrochemical energy storage. However, the high charge density of Al3+ causes its sluggish diffusion and the large size of AlCl4- renders the capacity of the cathode low. Here we propose heterostructured Bi2Te3/Sb(2)T(e)3 nanoflakes by interfacial engineering, constructing a heterojunction that induces a built-in electric field among the interface between two phases to realize rapid charge transfer, fast ion diffusion, and high capacity of cathode. Note that the operational mechanisms of heterostructured Bi2Te3/Sb2Te3 cathode are based on the reversible intercalation/deintercalation of Al3+ ions with the redox process between Bi3+ and Bi5+ upon discharge and charge. As expected, the heterostructured Bi2Te3/Sb2Te3 nanoflakes deliver superb Al-storage property and rate capability, which is among the best comprehensive performances of cathodes in RABs.
引用
收藏
页码:231 / 240
页数:10
相关论文
共 50 条
  • [21] Cooling effect of nanoscale Bi2Te3/Sb2Te3 multilayered thermoelectric thin films
    Hines, Mardecial
    Lenhardt, Joshua
    Lu, Ming
    Jiang, Li
    Xiao, Zhigang
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2012, 30 (04):
  • [22] Improving yield and performance in pseudo-ternary thermoelectric alloys (Bi2Te3)(Sb2Te3)(Sb2Se3)
    Ettenberg, MH
    Maddux, JR
    Taylor, PJ
    Jesser, WA
    Rosi, FD
    JOURNAL OF CRYSTAL GROWTH, 1997, 179 (3-4) : 495 - 502
  • [23] Preparation and Characterization of Bi2Te3/Sb2Te3 Thermoelectric Thin-Film Devices for Power Generation
    Kim, Min-Young
    Oh, Tae-Sung
    JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (06) : 1933 - 1939
  • [24] EFFECT OF ALTERNATE LAYERS OF Bi2Te3 - Sb2Te3 THIN FILMS ON STRUCTURAL, OPTICAL AND THERMOELECTRIC PROPERTIES
    Kumari, M.
    Sharma, Y. C.
    CHALCOGENIDE LETTERS, 2020, 17 (02): : 59 - 67
  • [25] Preparation and Characterization of Bi2Te3/Sb2Te3 Thermoelectric Thin-Film Devices for Power Generation
    Min-Young Kim
    Tae-Sung Oh
    Journal of Electronic Materials, 2014, 43 : 1933 - 1939
  • [26] The variation of the equilibrium of chemical reactions in the process of (Bi2Te3)(Sb2Te3)(Sb2Se3) crystal growth
    Sokolov, OB
    Skipidarov, SY
    Duvankov, NI
    JOURNAL OF CRYSTAL GROWTH, 2002, 236 (1-3) : 181 - 190
  • [27] Nanostructured Bi2Te3 and Sb2Te3 films prepared via MOCVD for Li-ion battery anodes
    Ko, Jesse S.
    Pierce, Jonathan M.
    Shuler, Priestly T.
    Gerasopoulos, Konstantinos
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 859
  • [28] Liquation phenomena in Sn/Bi2Te3, In/Bi2Te3 and Cu/Bi2Te3 couples
    Chen, Sinn-wen
    Hutabalian, Yohanes
    Hu, Zi-kai
    Chen, Hsu-hui
    Shih, Hao-wei
    Wang, Wei
    ACTA MATERIALIA, 2020, 196 : 418 - 429
  • [29] Thermoelectric Characteristics of Electrochemically Deposited Bi2Te3 and Sb2Te3 Thin Films of Relevance to Multilayer Preparation
    Ma, Yi
    Ahlberg, Elisabet
    Sun, Ye
    Iversen, Bo Brummerstedt
    Palmqvist, Anders E. C.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (02) : D50 - D58
  • [30] High Thermoelectric Performance in 2D Sb2Te3 and Bi2Te3 Nanoplate Composites Enabled by Energy Carrier Filtering and Low Thermal Conductivity
    Kimberly, Tanner Q.
    Ciesielski, Kamil M.
    Qi, Xiao
    Toberer, Eric S.
    Kauzlarich, Susan M.
    ACS APPLIED ELECTRONIC MATERIALS, 2023, 6 (05) : 2816 - 2825