Interfacial engineering of Bi2Te3/Sb2Te3 heterojunction enables high-energy cathode for aluminum batteries

被引:68
作者
Du, Yiqun [1 ]
Zhang, Boya [2 ]
Zhang, Wenyang [1 ]
Jin, Huixin [1 ]
Qin, Jingyu [1 ]
Wan, Jiaqi [2 ]
Zhang, Jianxin [1 ]
Chen, Guowen [1 ]
机构
[1] Shandong Univ, Sch Mat Sci & Engn, Key Lab Liquid Solid Struct Evolut & Proc Mat, Minist Educ, Jinan 250061, Peoples R China
[2] Qingdao Univ Sci & Technol, Sch Mat Sci & Engn, Qingdao 266042, Peoples R China
关键词
Bismuth telluride; Antimony telluride; Heterojunction; Cathode materials; Aluminum batteries; AL3+ STORAGE MECHANISM; PERFORMANCE; INTERCALATION; COMPOSITES; MXENE;
D O I
10.1016/j.ensm.2021.03.012
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rechargeable aluminum batteries (RABs) have been regarded as a low-cost and safe candidate for electrochemical energy storage. However, the high charge density of Al3+ causes its sluggish diffusion and the large size of AlCl4- renders the capacity of the cathode low. Here we propose heterostructured Bi2Te3/Sb(2)T(e)3 nanoflakes by interfacial engineering, constructing a heterojunction that induces a built-in electric field among the interface between two phases to realize rapid charge transfer, fast ion diffusion, and high capacity of cathode. Note that the operational mechanisms of heterostructured Bi2Te3/Sb2Te3 cathode are based on the reversible intercalation/deintercalation of Al3+ ions with the redox process between Bi3+ and Bi5+ upon discharge and charge. As expected, the heterostructured Bi2Te3/Sb2Te3 nanoflakes deliver superb Al-storage property and rate capability, which is among the best comprehensive performances of cathodes in RABs.
引用
收藏
页码:231 / 240
页数:10
相关论文
共 70 条
[1]   Three-Dimensional Molybdenum Diselenide Helical Nanorod Arrays for High-Performance Aluminum-Ion Batteries [J].
Ai, Yuanfei ;
Wu, Shu-Chi ;
Wang, Kuangye ;
Yang, Tzu-Yi ;
Liu, Mingjin ;
Liao, Hsiang-Ju ;
Sun, Jiachen ;
Chen, Jyun-Hong ;
Tang, Shin-Yi ;
Wu, Ding Chou ;
Su, Teng-Yu ;
Wang, Yi-Chung ;
Chen, Hsuan-Chu ;
Zhang, Shan ;
Liu, Wen-Wu ;
Chen, Yu-Ze ;
Lee, Ling ;
He, Jr-Hau ;
Wang, Zhiming M. ;
Chueh, Yu-Lun .
ACS NANO, 2020, 14 (07) :8539-8550
[2]   Trends in Aluminium-Based Intercalation Batteries [J].
Ambroz, Filip ;
Macdonald, Thomas J. ;
Nann, Thomas .
ADVANCED ENERGY MATERIALS, 2017, 7 (15)
[3]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[4]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[5]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/nmat2612, 10.1038/NMAT2612]
[6]   Stable CoSe2/carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries [J].
Cai, Tonghui ;
Zhao, Lianming ;
Hu, Haoyu ;
Li, Tongge ;
Li, Xiaochen ;
Guo, Sheng ;
Li, Yanpeng ;
Xue, Qingzhong ;
Xing, Wei ;
Yan, Zifeng ;
Wang, Lianzhou .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) :2341-2347
[7]   Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium-sulfur battery cathodes with ultralong lifespan [J].
Chen, Shixia ;
Luo, Junhui ;
Li, Nuoyan ;
Han, Xinxin ;
Wang, Jun ;
Deng, Qiang ;
Zeng, Zheling ;
Deng, Shuguang .
ENERGY STORAGE MATERIALS, 2020, 30 :187-195
[8]   High rate electrochemical performances of nanosized ZnO and carbon co-coated LiFePO4 cathode [J].
Cui, Yan ;
Zhao, Xiaoli ;
Guo, Ruisong .
MATERIALS RESEARCH BULLETIN, 2010, 45 (07) :844-849
[9]   Creasing Highly Porous V2O5 Scaffolds for High Energy Density Aluminum-Ion Batteries [J].
Diem, Achim M. ;
Bill, Joachim ;
Burghard, Zaklina .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) :4033-4042
[10]   Tunable Layered (Na,Mn)V8O20•nH2O Cathode Material for High-Performance Aqueous Zinc Ion Batteries [J].
Du, Min ;
Liu, Chaofeng ;
Zhang, Feng ;
Dong, Wentao ;
Zhang, Xiaofei ;
Sang, Yuanhua ;
Wang, Jian-Jun ;
Guo, Yu-Guo ;
Liu, Hong ;
Wang, Shuhua .
ADVANCED SCIENCE, 2020, 7 (13)