Leaf respiration in darkness and in the light under pre-industrial, current and elevated atmospheric CO2 concentrations

被引:49
作者
Ayub, Gohar [1 ,2 ]
Zaragoza-Castells, Joana [2 ,3 ]
Griffin, Kevin L. [4 ]
Atkin, Owen K. [1 ,2 ,5 ]
机构
[1] Australian Natl Univ, Res Sch Biol, Div Plant Sci, Canberra, ACT 0200, Australia
[2] Univ York, Dept Biol, York YO10 5YW, N Yorkshire, England
[3] Univ Edinburgh, Sch Geosci, Edinburgh EH8 9XP, Midlothian, Scotland
[4] Columbia Univ, Dept Earth & Environm Sci, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
[5] Australian Natl Univ, ARC Ctr Excellence Plant Energy Biol, Res Sch Biol, Canberra, ACT 0200, Australia
关键词
Climate change; Kok effect; Photosynthesis; Photorespiration; Respiration; Soybean; GAS-EXCHANGE; THERMAL-ACCLIMATION; PLANT RESPIRATION; ROOT RESPIRATION; MITOCHONDRIAL METABOLISM; NITRATE ASSIMILATION; ENERGY-REQUIREMENTS; XANTHIUM-STRUMARIUM; SHORT-TERM; LONG-TERM;
D O I
10.1016/j.plantsci.2014.05.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Our study sought to understand how past, low atmospheric CO2 concentrations ([CO2]) impact respiration (R) of soybean (Glycine max), when compared to plants grown under current and future [CO2]s. Experiments were conducted using plants grown under 290, 400 and 700 ppm [CO2]. Leaf R was measured in both darkness (R-D) and in the light (R-L; using the Kok method), with short-term changes in measurement [CO2] and [O-2] being used to explore the relationship between light inhibition of leaf R and photorespiration. Root R, photosynthesis (A), leaf [N] and biomass allocation traits were also quantified. In contrast to the inhibitory effect of low growth [CO2] on A, growth [CO2] had no significant effect on leaf RD or root R. Irrespective of growth [CO2], RL was always lower than R-D, with light inhibiting leaf R by 17-47%. Importantly, the degree of light inhibition of leaf R was lowest in plants grown under low [CO2], with variations in RL being positively correlated with R-D and photorespiration. Irrespective of whether leaf R was measured in the light or dark, a greater proportion of the carbon fixed by leaf photosynthesis was released by leaf R in plants grown under low [CO2] than under current/future [CO2]'s. Collectively, our results highlight the differential responses of A and R to growth of plants under low to elevated atmospheric [CO2]. (C) 2014 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:120 / 130
页数:11
相关论文
共 72 条
[11]   ROOT RESPIRATION ASSOCIATED WITH AMMONIUM AND NITRATE ABSORPTION AND ASSIMILATION BY BARLEY [J].
BLOOM, AJ ;
SUKRAPANNA, SS ;
WARNER, RL .
PLANT PHYSIOLOGY, 1992, 99 (04) :1294-1301
[12]   Carbon Dioxide Enrichment Inhibits Nitrate Assimilation in Wheat and Arabidopsis [J].
Bloom, Arnold J. ;
Burger, Martin ;
Rubio-Asensio, Jose Salvador ;
Cousins, Asaph B. .
SCIENCE, 2010, 328 (5980) :899-903
[13]  
BOUMA TJ, 1993, PHYSIOL PLANTARUM, V89, P133, DOI 10.1111/j.1399-3054.1993.tb01796.x
[14]   THE RESPIRATORY ENERGY-REQUIREMENTS INVOLVED IN NOCTURNAL CARBOHYDRATE EXPORT FROM STARCH-STORING MATURE SOURCE LEAVES AND THEIR CONTRIBUTION TO LEAF DARK RESPIRATION [J].
BOUMA, TJ ;
DEVISSER, R ;
VANLEEUWEN, PH ;
DEKOCK, MJ ;
LAMBERS, H .
JOURNAL OF EXPERIMENTAL BOTANY, 1995, 46 (290) :1185-1194
[15]   EFFECT OF TEMPERATURE ON THE CO2/O2 SPECIFICITY OF RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE OXYGENASE AND THE RATE OF RESPIRATION IN THE LIGHT - ESTIMATES FROM GAS-EXCHANGE MEASUREMENTS ON SPINACH [J].
BROOKS, A ;
FARQUHAR, GD .
PLANTA, 1985, 165 (03) :397-406
[16]   Does the direct effect of atmospheric CO2 concentration on leaf respiration vary with temperature?: Responses in two species of Plantago that differ in relative growth rate [J].
Bruhn, D ;
Mikkelsen, TN ;
Atkin, OK .
PHYSIOLOGIA PLANTARUM, 2002, 114 (01) :57-64
[17]   An analytical model of non-photorespiratory CO2 release in the light and dark in leaves of C3 species based on stoichiometric flux balance [J].
Buckley, Thomas N. ;
Adams, Mark A. .
PLANT CELL AND ENVIRONMENT, 2011, 34 (01) :89-112
[18]   Response of respiration of soybean leaves grown at ambient and elevated carbon dioxide concentrations to day-to-day variation in light and temperature under field conditions [J].
Bunce, JA .
ANNALS OF BOTANY, 2005, 95 (06) :1059-1066
[19]   Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group [J].
Campbell, Catherine ;
Atkinson, Lindsey ;
Zaragoza-Castells, Joana ;
Lundmark, Maria ;
Atkin, Owen ;
Hurry, Vaughan .
NEW PHYTOLOGIST, 2007, 176 (02) :375-389
[20]   Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.) [J].
Campbell, CD ;
Sage, RF .
PLANT CELL AND ENVIRONMENT, 2006, 29 (05) :844-853