A Phase Field Method for Tomographic Reconstruction from Limited Data

被引:2
作者
Hewett, Russell J. [1 ]
Jermyn, Ian [2 ]
Heath, Michael T. [3 ]
Kamalabadi, Farzad [4 ]
机构
[1] MIT, Dept Math, Imaging & Comp Grp, Cambridge, MA 02139 USA
[2] Univ Durham, Dept Math Sci Durham, Durham, England
[3] Univ Illinois, Dept Comp Sci, Urbana, IL USA
[4] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL USA
来源
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012 | 2012年
关键词
FINITE-ELEMENT EQUATIONS; CORONAL MASS EJECTION;
D O I
10.5244/C.26.120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical tomographic reconstruction methods fail for problems in which there is extreme temporal and spatial sparsity in the measured data. Reconstruction of coronal mass ejections (CMEs), a space weather phenomenon with potential negative effects on the Earth, is one such problem. However, the topological complexity of CMEs renders recent limited data reconstruction methods inapplicable. We propose an energy function, based on a phase field level set framework, for the joint segmentation and tomographic reconstruction of CMEs from measurements acquired by coronagraphs, a type of solar telescope. Our phase field model deals easily with complex topologies, and is more robust than classical methods when the data are very sparse. We use a fast variational algorithm that combines the finite element method with a trust region variant of Newton's method to minimize the energy. We compare the results obtained with our model to classical regularized tomography for synthetic CME-like images.
引用
收藏
页数:11
相关论文
共 16 条
  • [1] [Anonymous], 1987, Unconstrained Optimization: Practical Methods of Optimization
  • [2] Aschwanden M. J., 2004, Physics of the Solar Corona
  • [3] SOME PRACTICAL PROCEDURES FOR THE SOLUTION OF NON-LINEAR FINITE-ELEMENT EQUATIONS
    BATHE, KJ
    CIMENTO, AP
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1980, 22 (01) : 59 - 85
  • [4] Dynamic Three-Dimensional Tomography of the Solar Corona
    Butala, M. D.
    Hewett, R. J.
    Frazin, R. A.
    Kamalabadi, F.
    [J]. SOLAR PHYSICS, 2010, 262 (02) : 495 - 509
  • [5] A semiempirical magnetohydrodynamical model of the solar wind
    Cohen, O.
    Sokolov, I. V.
    Roussev, I. I.
    Arge, C. N.
    Manchester, W. B.
    Gombosi, T. I.
    Frazin, R. A.
    Park, H.
    Butala, M. D.
    Kamalabadi, F.
    Velli, M.
    [J]. ASTROPHYSICAL JOURNAL, 2007, 654 (02) : L163 - L166
  • [6] The STEREO observatory
    Driesman, Andrew
    Hynes, Shane
    Cancro, George
    [J]. SPACE SCIENCE REVIEWS, 2008, 136 (1-4) : 17 - 44
  • [7] TOWARD RECONSTRUCTION OF CORONAL MASS EJECTION DENSITY FROM ONLY THREE POINTS OF VIEW
    Frazin, R. A.
    Jacob, M.
    Manchester, W. B., IV
    Morgan, H.
    Wakin, M. B.
    [J]. ASTROPHYSICAL JOURNAL, 2009, 695 (01) : 636 - 641
  • [8] Jacob MC, 2006, ORIGINS OF FREEMASONRY: FACTS & FICTIONS, P11
  • [9] Levenberg K, 1944, Q Appl Math, V2, P164, DOI [10.1090/QAM/10666, 10.1090/qam/10666, DOI 10.1090/QAM/10666, DOI 10.1090/QAM/1944-02-02]
  • [10] Three-dimensional MHD simulation of the 2003 October 28 coronal mass ejection:: Comparison with LASCO coronagraph observations
    Manchester, Ward B.
    Vourlidas, Angelos
    Toth, Gabor
    Lugaz, Noe
    Roussev, Ilia I.
    Sokolov, Igor V.
    Gombosi, Tamas I.
    De Zeeuw, Darren L.
    Opher, Merav
    [J]. ASTROPHYSICAL JOURNAL, 2008, 684 (02) : 1448 - 1460