共 50 条
Nuclear Ignition of White Dwarf Stars by Relativistic Encounters with Rotating Intermediate Mass Black Holes
被引:7
|作者:
Anninos, Peter
[1
]
Hoffman, Robert D.
[1
]
Grewal, Manvir
[2
]
Lavell, Michael J.
[1
]
Fragile, P. Chris
[3
,4
]
机构:
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[3] Coll Charleston, Dept Phys & Astron, Charleston, SC 29424 USA
[4] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
基金:
美国国家科学基金会;
关键词:
Black holes;
White dwarfs;
Black hole physics;
Hydrodynamics;
Explosive nucleosynthesis;
TIDAL DISRUPTION;
SPIN;
NUCLEOSYNTHESIS;
DETONATIONS;
EVOLUTION;
ENERGY;
MODEL;
TI-44;
D O I:
10.3847/1538-4357/ab4ae0
中图分类号:
P1 [天文学];
学科分类号:
0704 ;
摘要:
We present results from general relativistic calculations of nuclear ignition in white dwarf stars triggered by near encounters with rotating intermediate mass black holes with different spin and alignment parameters. These encounters create thermonuclear environments characteristic of Type Ia supernovae capable of producing both calcium and iron-group elements in arbitrary ratios, depending primarily on the proximity of the interaction which acts as a strong moderator of nucleosynthesis. We explore the effects of black hole spin and spin-orbital alignment on burn-product synthesis to determine whether they might also be capable of moderating reactive flows. When normalized to equivalent impact penetration, accounting for frame-dragging corrections, the influence of spin is weak, no more than 25% as measured by nuclear energy release and mass of burn products, even for near maximally rotating black holes. Stars on prograde trajectories approach closer to the black hole and produce significantly more unbound debris and iron-group elements than is possible by encounters with nonrotating black holes or by retrograde orbits, at more than 50% mass conversion efficiency. The debris contains several radioisotopes, most notably Ni-56, made in amounts that produce subluminous (but still observable) light curves compared to branch-normal SNe Ia.
引用
收藏
页数:14
相关论文