Multivariate Skew t-Distribution: Asymptotics for Parameter Estimators and Extension to Skew t-Copula

被引:4
|
作者
Kollo, Tonu [1 ]
Kaarik, Meelis [1 ]
Selart, Anne [1 ]
机构
[1] Univ Tartu, Inst Math & Stat, Narva Mnt 18, EE-51009 Tartu, Estonia
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 06期
关键词
asymptotic normality; inverse chi-distribution; multivariate cumulants; multivariate moments; skew normal distribution; skew t-copula; skew t-distribution; MODELS;
D O I
10.3390/sym13061059
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Symmetric elliptical distributions have been intensively used in data modeling and robustness studies. The area of applications was considerably widened after transforming elliptical distributions into the skew elliptical ones that preserve several good properties of the corresponding symmetric distributions and increase possibilities of data modeling. We consider three-parameter p-variate skew t-distribution where p-vector mu is the location parameter, Sigma : p x p is the positive definite scale parameter, p-vector alpha is the skewness or shape parameter, and the number of degrees of freedom nu is fixed. Special attention is paid to the two-parameter distribution when mu = 0 that is useful for construction of the skew t-copula. Expressions of the parameters are presented through the moments and parameter estimates are found by the method of moments. Asymptotic normality is established for the estimators of Sigma and alpha. Convergence to the asymptotic distributions is examined in simulation experiments.
引用
收藏
页数:22
相关论文
共 50 条