On class number relations over function fields

被引:3
作者
Wang, JTY [1 ]
Yu, J [1 ]
机构
[1] Acad Sinica, Inst Math, Taipei 115, Taiwan
关键词
D O I
10.1006/jnth.1997.2213
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The analogues of the classical Kronecker and Hurwitz class number relations for function fields of any positive characteristic are obtained by a method parallel to the classical proof. In the case of even characteristic, purely inseparable orders also have to be taken into account. A subtle point is the inseparability of the j-invariants for these orders. (C) 1998 Academic Press.
引用
收藏
页码:181 / 196
页数:16
相关论文
共 8 条
[1]   ON THE MODULAR EQUATION FOR DRINFELD MODULES OF RANK-2 [J].
BAE, SH .
JOURNAL OF NUMBER THEORY, 1992, 42 (02) :123-133
[2]   SINGULAR MODULI AND SUPERSINGULAR MODULI OF DRINFELD MODULES [J].
BROWN, ML .
INVENTIONES MATHEMATICAE, 1992, 110 (02) :419-439
[3]  
COX DA, 1989, PRIMES FORM X2 PLUS
[4]   ON THE COEFFICIENTS OF DRINFELD MODULAR-FORMS [J].
GEKELER, EU .
INVENTIONES MATHEMATICAE, 1988, 93 (03) :667-700
[5]   THE ARITHMETIC OF DRINFELD MODULES [J].
GEKELER, EU .
MATHEMATISCHE ANNALEN, 1983, 262 (02) :167-182
[6]  
HASSE H, 1934, J REINE ANGEW MATH, V172, P37
[7]  
HAYES D, 1980, ADV MATH, V16, P173
[8]   A CLASS NUMBER RELATION OVER FUNCTION-FIELDS [J].
YU, JK .
JOURNAL OF NUMBER THEORY, 1995, 54 (02) :318-340