Fabrication of highly conductive graphene flexible circuits by 3D printing

被引:258
作者
Zhang, Di [1 ]
Chi, Baihong [3 ]
Li, Bowen [1 ]
Gao, Zewen [1 ]
Du, Yao [1 ]
Guo, Jinbao [1 ]
Wei, Jie [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, Coll Mat Sci & Engn, 15 Bei San Huan East Rd, Beijing 100029, Peoples R China
[2] Beijing Engn Res Ctr Synth & Applicat Waterborne, Beijing 100029, Peoples R China
[3] Beijing Univ Chem Technol, Coll Mech & Elect Engn, 15 Bei San Huan East Rd, Beijing 100029, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
3D print; Graphene; Flexible circuits; LITHIUM-ION BATTERIES; STRAIN SENSORS; SILVER NANOPARTICLES; SCALABLE FABRICATION; COMPOSITE; OXIDE; SUPERCAPACITORS; VALIDATION; COMPONENTS; STORAGE;
D O I
10.1016/j.synthmet.2016.03.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Fused depositing modeling (FDM) is a fast, efficient process among 3D printing techniques. In this paper, we report the fabrication of the 3D printed flexible circuits based on graphene. Modified two-step in-situ reduced method is used to synthesize reduced graphene oxide (r-GO), whose conductivity can reach to 600 S/cm. Polylactic acid (PLA) and r-GO are mixed by melt blending. The SEM images show that the r-GO can be homogenous dispersed in the PLA. The 3D print-used composites filaments with the diameter of 1.75 mm are fabricated through melt extrusion. The conductivity of the composite filaments from 3D printer can reach to 4.76 S/cm (6 wt% r-GO). The orientation of r-GO occurs during the extrusion process, which contributing to increase the conductivity of the filaments. The composite also exhibit superior mechanical property. The printed 2D and 3D flexible circuits have strong interface bonding force between the layers. The filaments from 3D printer can replace the copper wire because of the high conductivity. This arbitrary 3D graphene-based structure printing technic may open a new prospect in electronic and energy storage fields. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 86
页数:8
相关论文
共 53 条
[1]   Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces [J].
Adams, Jacob J. ;
Duoss, Eric B. ;
Malkowski, Thomas F. ;
Motala, Michael J. ;
Ahn, Bok Yeop ;
Nuzzo, Ralph G. ;
Bernhard, Jennifer T. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2011, 23 (11) :1335-1340
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Dip-Pen-Nanolithographic Patterning of Metallic, Semiconductor, and Metal Oxide Nanostructures on Surfaces [J].
Basnar, Bernhard ;
Willner, Itamar .
SMALL, 2009, 5 (01) :28-44
[4]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[5]   Fabrication of photonic crystals for the visible spectrum by holographic lithography [J].
Campbell, M ;
Sharp, DN ;
Harrison, MT ;
Denning, RG ;
Turberfield, AJ .
NATURE, 2000, 404 (6773) :53-56
[6]   Single-Walled Carbon Nanotubes/Polymer Composite Electrodes Patterned Directly from Solution [J].
Chang, Jingbo ;
Najeeb, Choolakadavil Khalid ;
Lee, Jae-Hyeok ;
Kim, Jae-Ho .
LANGMUIR, 2011, 27 (11) :7330-7336
[7]   Free-Standing Hierarchically Sandwich-Type Tungsten Disulfide Nanotubes/Graphene Anode for Lithium-Ion Batteries [J].
Chen, Renjie ;
Zhao, Teng ;
Wu, Weiping ;
Wu, Feng ;
Li, Li ;
Qian, Ji ;
Xu, Rui ;
Wu, Huiming ;
Albishri, Hassan M. ;
Al-Bogami, A. S. ;
Abd El-Hady, Deia ;
Lu, Jun ;
Amine, Khalil .
NANO LETTERS, 2014, 14 (10) :5899-5904
[8]   Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates [J].
Chen, Shuoran ;
Su, Meng ;
Zhang, Cong ;
Gao, Meng ;
Bao, Bin ;
Yang, Qiang ;
Su, Bin ;
Song, Yanlin .
ADVANCED MATERIALS, 2015, 27 (26) :3928-+
[9]   Low cost lab-on-a-chip prototyping with a consumer grade 3D printer [J].
Comina, German ;
Suska, Anke ;
Filippini, Daniel .
LAB ON A CHIP, 2014, 14 (16) :2978-2982
[10]   Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication [J].
Cumpston, BH ;
Ananthavel, SP ;
Barlow, S ;
Dyer, DL ;
Ehrlich, JE ;
Erskine, LL ;
Heikal, AA ;
Kuebler, SM ;
Lee, IYS ;
McCord-Maughon, D ;
Qin, JQ ;
Röckel, H ;
Rumi, M ;
Wu, XL ;
Marder, SR ;
Perry, JW .
NATURE, 1999, 398 (6722) :51-54