LCP-Tm: An Assay to Measure and Understand Stability of Membrane Proteins in a Membrane Environment

被引:43
作者
Liu, Wei [1 ]
Hanson, Michael A. [1 ]
Stevens, Raymond C. [1 ]
Cherezov, Vadim [1 ]
机构
[1] Scripps Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
基金
美国国家卫生研究院;
关键词
LIPIDIC CUBIC PHASES; MONOOLEIN/WATER SYSTEM; RECEPTOR FUNCTION; CRYSTAL-STRUCTURE; CRYSTALLIZATION; MESOPHASES; CHOLESTEROL; ACTIVATION; TEMPERATURE; MECHANISM;
D O I
10.1016/j.bpj.2009.12.4296
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Structural and functional studies of membrane proteins are limited by their poor stability outside the native membrane environment. The development of novel methods to efficiently stabilize membrane proteins immediately after purification is important for biophysical studies, and is likely to be critical for studying the more challenging human targets. Lipidic cubic phase (LCP) provides a suitable stabilizing matrix for studying membrane proteins by spectroscopic and other biophysical techniques, including obtaining highly ordered membrane protein crystals for structural studies. We have developed a robust and accurate assay, LCP-T-m, for measuring the thermal stability of membrane proteins embedded in an LCP matrix. In its two implementations, protein denaturation is followed either by a change in the intrinsic protein fluorescence on ligand release, or by an increase in the fluorescence of a thiol-binding reporter dye that measures exposure of cysteines buried in the native structure. Application of the LCP-T-m assay to an engineered human beta(2)-adrenergic receptor and bacteriorhodopsin revealed a number of factors that increased protein stability in LCP. This assay has the potential to guide protein engineering efforts and identify stabilizing conditions that may improve the chances of obtaining high-resolution structures of intrinsically unstable membrane proteins.
引用
收藏
页码:1539 / 1548
页数:10
相关论文
共 46 条
[1]   Where does cholesterol act during activation of the nicotinic acetylcholine receptor? [J].
Addona, GH ;
Sandermann, H ;
Kloczewiak, MA ;
Husain, SS ;
Miller, KW .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1998, 1370 (02) :299-309
[2]   Microscale fluorescent thermal stability assay for membrane proteins [J].
Alexandrov, Alexander I. ;
Mileni, Mauro ;
Chien, Ellen Y. T. ;
Hanson, Michael A. ;
Stevens, Raymond C. .
STRUCTURE, 2008, 16 (03) :351-359
[3]  
[Anonymous], 2000, FEMS MICROBIOL REV
[4]   EFFECT OF TEMPERATURE ON MICELLE SIZE OF A HOMOGENEOUS NON-IONIC DETERGENT [J].
BALMBRA, RR ;
CLUNIE, JS ;
GOODMAN, JF ;
CORKILL, JM .
TRANSACTIONS OF THE FARADAY SOCIETY, 1962, 58 (476) :1661-&
[5]  
Briggs J, 1996, J PHYS II, V6, P723, DOI 10.1051/jp2:1996208
[6]   Crystallizing membrane proteins using lipidic mesophases [J].
Caffrey, Martin ;
Cherezov, Vadim .
NATURE PROTOCOLS, 2009, 4 (05) :706-731
[7]   On the Mechanism of Membrane Protein Crystallization in Lipidic Mesophases [J].
Caffrey, Martin .
CRYSTAL GROWTH & DESIGN, 2008, 8 (12) :4244-4254
[8]   Crystallizing Membrane Proteins for Structure Determination: Use of Lipidic Mesophases [J].
Caffrey, Martin .
ANNUAL REVIEW OF BIOPHYSICS, 2009, 38 :29-51
[9]   A simple mechanical mixer for small viscous lipid-containing samples [J].
Chen, AH ;
Hummel, B ;
Qiu, H ;
Caffrey, M .
CHEMISTRY AND PHYSICS OF LIPIDS, 1998, 95 (01) :11-21
[10]   Membrane protein crystallization in meso: Lipid type-tailoring of the cubic phase [J].
Cherezov, V ;
Clogston, J ;
Misquitta, Y ;
Abdel-Gawad, W ;
Caffrey, M .
BIOPHYSICAL JOURNAL, 2002, 83 (06) :3393-3407