Self-tuned robust fractional order fuzzy PD controller for uncertain and nonlinear active suspension system

被引:42
作者
Kumar, Vineet [1 ]
Rana, K. P. S. [1 ]
Kumar, Jitendra [1 ]
Mishra, Puneet [1 ]
机构
[1] Univ Delhi, Netaji Subhas Inst Technol, Div Instrumentat & Control Engn, Sect 3, New Delhi 110078, India
关键词
Active suspension system; Fuzzy PD controller; Adaptive control; Uncertainty; Nonlinearity; Fractional order control; LOGIC CONTROLLER; PID CONTROLLER; DESIGN;
D O I
10.1007/s00521-016-2774-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a self-tuned robust fractional order fuzzy proportional derivative (FO-FPD) controller is proposed for nonlinear active suspension system of a quarter car. Quarter car is a highly uncertain system as the number of riders or payload may vary. The control objective is to improve the level of ride comfort by minimizing the root mean square of vertical vibration acceleration (RMSVVA) of car body and maintaining hard constraints such as tracking force, ratio of tyre dynamic and static loads and suspension travel. The used FO-FPD controller is a nonlinear fuzzy logic controller having self-tuning capability, i.e. it changes its gains at runtime. The FO-FPD controller is realized using non-integer differentiator operator in FPD controller. The gains of FO-FPD and FPD controllers are tuned using Genetic Algorithm optimization method for a sinusoidal road surface. To evaluate the performances, extensive simulation studies were carried out and FO-FPD and FPD controllers were compared for different roads profiles such as sinusoidal, random and bump. It has been observed that FO-FPD and FPD controllers outperform passive suspension system in terms of RMSVVA and offer much better comfort ride while keeping all the hard constraint in the specified limits. Furthermore, FO-FPD controller demonstrated an excellent comfort ride, especially in uncertain environment, wherein it offered very robust behaviour as compared to FPD controller. Also, bonded-input and bounded-output stability conditions are established for overall closed loop control system by using small gain theorem.
引用
收藏
页码:1827 / 1843
页数:17
相关论文
共 44 条
[1]   Sliding mode neural network inference fuzzy logic control for active suspension systems [J].
Al-Holou, N ;
Lahdhiri, T ;
Joo, DS ;
Weaver, J ;
Al-Abbas, F .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2002, 10 (02) :234-246
[2]  
[Anonymous], 1993, NONLINEAR SYSTEMS AN
[3]   A Robust Predictive Control Design for Nonlinear Active Suspension Systems [J].
Bououden, Sofiane ;
Chadli, Mohammed ;
Karimi, Hamid Reza .
ASIAN JOURNAL OF CONTROL, 2016, 18 (01) :122-132
[4]   Editors' perspectives: road vehicle suspension design, dynamics, and control [J].
Cao, Dongpu ;
Song, Xubin ;
Ahmadian, Mehdi .
VEHICLE SYSTEM DYNAMICS, 2011, 49 (1-2) :3-28
[5]   Ain interval type-2 fuzzy logic controller for quarter-vehicle active suspensions [J].
Cao, J. ;
Liu, H. ;
Li, P. ;
Brown, D. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2008, 222 (D8) :1361-1373
[6]  
CHEN G, 1994, IEEE INT C FUZZ SYST, V2, P942
[7]  
Chen G., 2001, INTRO FUZZY SETS FUZ
[8]  
Chen Guanrong., 2006, INTRO FUZZY SYSTEMS, V1st
[9]   Constrained H∞ control of active suspensions:: An LMI approach [J].
Chen, H ;
Guo, KH .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2005, 13 (03) :412-421
[10]   New model-free adaptive sliding controller for active suspension system [J].
Chen, Hung-Yi ;
Huang, Shiuh-Jer .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2008, 39 (01) :57-69