Forbidden-Set Distance Labels for Graphs of Bounded Doubling Dimension

被引:17
作者
Abraham, Ittai [1 ]
Chechik, Shiri [2 ]
Gavoille, Cyril [3 ]
Peleg, David [4 ,5 ]
机构
[1] VMware Res, 3401 Hillview Ave, Palo Alto, CA 94304 USA
[2] Tel Aviv Univ, IL-69978 Tel Aviv, Israel
[3] Univ Bordeaux, LaBRI, IUF, 351 Cours Liberat, F-33405 Talence, France
[4] Weizmann Inst Sci, Rehovot, Israel
[5] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-7610001 Rehovot, Israel
基金
以色列科学基金会;
关键词
Algorithms; Theory; Doubling dimension; forbidden sets; fault-tolerance; distance labeling; compact routing; COMPACT; LOCATION; ORACLES;
D O I
10.1145/2818694
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article proposes a forbidden-set labeling scheme for the family of unweighted graphs with doubling dimension bounded by a. For an n-vertex graph G in this family, and for any desired precision parameter epsilon > 0, the labeling scheme stores an O(1 + epsilon(-1))(2 alpha) log(2) n-bit label at each vertex. Given the labels of two end-vertices s and t, and the labels of a set F of "forbidden" vertices and/or edges, our scheme can compute, in O(1 + epsilon(-1))(2 alpha) center dot vertical bar F vertical bar(2) log n time, a 1 + epsilon stretch approximation for the distance between s and t in the graph G \ F. The labeling scheme can be extended into a forbidden-set labeled routing scheme with stretch 1 + epsilon for graphs of bounded doubling dimension.
引用
收藏
页数:17
相关论文
共 33 条
[1]  
Abraham I, 2012, STOC'12: PROCEEDINGS OF THE 2012 ACM SYMPOSIUM ON THEORY OF COMPUTING, P1199
[2]  
Abraham I, 2011, LECT NOTES COMPUT SC, V6630, P230
[3]  
Abraham I, 2010, PROC APPL MATH, V135, P782
[4]  
Abraham Ittai, 2006, PODC, P188, DOI 10.1145/1146381.1146411
[5]  
[Anonymous], 2001, 13 ANN ACM S PAR ALG, DOI DOI 10.1145/378580.378581
[6]  
[Anonymous], 2004, STOC '04: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, DOI DOI 10.1145/1007352.1007399
[7]  
Bernstein A, 2009, ACM S THEORY COMPUT, P101
[8]  
Chechik S, 2011, LECT NOTES COMPUT SC, V6756, P101, DOI 10.1007/978-3-642-22012-8_7
[9]  
Chechik S, 2010, LECT NOTES COMPUT SC, V6346, P84, DOI 10.1007/978-3-642-15775-2_8
[10]  
Chechik Shiri, 2013, PODC, P33, DOI DOI 10.1145/2484239.2484268.31