Experimentally validated full-vectorial model of wavelength multicasting via four-wave mixing in straight waveguides

被引:1
作者
Guo, Kai [1 ,2 ,3 ]
Feng, Jiacheng [1 ]
Shi, Xiaodong [2 ]
Li, Jiehui [4 ]
Gao, Minghong [5 ]
Jing, Hui [2 ]
Wang, Xiaolin [1 ]
Yang, Junbo [3 ]
Ou, Haiyan [2 ]
机构
[1] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Hunan, Peoples R China
[2] Tech Univ Denmark, Dept Photon Engn, DK-2800 Lyngby, Denmark
[3] Natl Univ Def Technol, Ctr Mat Sci, Changsha 410073, Hunan, Peoples R China
[4] Fudan Univ, Shanghai Inst Adv Commun & Data Sci, Key Lab Informat Sci Electromagnet Waves, Shanghai 200433, Peoples R China
[5] Natl Univ Def Technol, Coll Artificial Intelligence, Changsha 410073, Hunan, Peoples R China
基金
新加坡国家研究基金会;
关键词
OPTICAL PARAMETRIC-AMPLIFIERS; CONVERSION; SIGNALS; DISPERSION; PROPAGATION; ABSORPTION; GENERATION;
D O I
10.1038/s41598-018-31470-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive full-vectorial nonlinear propagation equations of dual-pumped four-wave mixing in straight waveguides, which are valid in characterizing the one-to-six wavelength multicasting. Special attention is paid to the resulting idler wavelengths and their conversion efficiency, which enables the optimization of the experimental designs, including the incident wavelength and the power of pumps and signal. We validate the model by comparing the numerical simulation to the experimental measurement in a silicon-on-insulator waveguide, for the first time to our best knowledge, and achieve a good agreement. We further derive the general form of the proposed model for the case of using multiple, pumps, which holds a potential to numerically predict the performance of complex wavelength multicasting, and essentially guide the waveguide designs.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Wavelength conversion of 28 GBaud 16-QAM signals based on four-wave mixing in a silicon nanowire [J].
Adams, Rhys ;
Spasojevic, Mina ;
Chagnon, Mathieu ;
Malekiha, Mahdi ;
Li, Jia ;
Plant, David V. ;
Chen, Lawrence R. .
OPTICS EXPRESS, 2014, 22 (04) :4083-4090
[2]  
Agrawal G., 2012, Nonlinear Fiber Optics
[3]   Wavelength multicasting in silicon photonic nanowires [J].
Biberman, Aleksandr ;
Lee, Benjamin G. ;
Turner-Foster, Amy C. ;
Foster, Mark A. ;
Lipson, Michal ;
Gaeta, Alexander L. ;
Bergman, Keren .
OPTICS EXPRESS, 2010, 18 (17) :18047-18055
[4]   Influence of nonlinear absorption on Raman amplification in Silicon waveguides [J].
Claps, R ;
Raghunathan, V ;
Dimitropoulos, D ;
Jalali, B .
OPTICS EXPRESS, 2004, 12 (12) :2774-2780
[5]   Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides [J].
Dimitropoulos, D ;
Jhaveri, R ;
Claps, R ;
Woo, JCS ;
Jalali, B .
APPLIED PHYSICS LETTERS, 2005, 86 (07) :1-3
[6]   Phase-matching and nonlinear optical processes in silicon waveguides [J].
Dimitropoulos, D ;
Raghunathan, V ;
Claps, R ;
Jalali, B .
OPTICS EXPRESS, 2004, 12 (01) :149-160
[7]   Mode-selective wavelength conversion based on four-wave mixing in a multimode silicon waveguide [J].
Ding, Yunhong ;
Xu, Jing ;
Ou, Haiyan ;
Peucheret, Christophe .
OPTICS EXPRESS, 2014, 22 (01) :127-135
[8]   Ultrahigh-efficiency apodized grating coupler using fully etched photonic crystals [J].
Ding, Yunhong ;
Ou, Haiyan ;
Peucheret, Christophe .
OPTICS LETTERS, 2013, 38 (15) :2732-2734
[9]   Silicon photonic devices and integrated circuits [J].
Dong, Po ;
Chen, Young-Kai ;
Duan, Guang-Hua ;
Neilson, David T. .
NANOPHOTONICS, 2014, 3 (4-5) :215-228
[10]  
Du Y., 2009, PHYS REV A, V79