Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes

被引:37
作者
Liu, Yonglan [1 ]
Zhang, Dong [1 ]
Tang, Yijing [1 ]
Zhang, Yanxian [1 ]
Gong, Xiong [2 ]
Xie, Shaowen [3 ]
Zheng, Jie [1 ]
机构
[1] Univ Akron, Dept Chem Biomol & Corros Engn, Akron, OH 44325 USA
[2] Univ Akron, Dept Polymer Engn, Akron, OH 44325 USA
[3] Hunan Univ Technol, Coll Life Sci & Chem, Hunan Key Lab Biomed Nanomat & Devices, Zhuzhou 412007, Peoples R China
基金
美国国家科学基金会;
关键词
Machine learning; Antifouling; Polymer brush; Protein adsorption; Artificial neural network; Supporting vector regression; SELF-ASSEMBLED MONOLAYERS; METAL-ORGANIC FRAMEWORKS; MOLECULAR SIMULATIONS; PROTEIN; SURFACES; RESISTANCE; PREDICTION; ACID; METHACRYLATE); TEMPERATURE;
D O I
10.1016/j.cej.2021.129872
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rational development of antifouling materials is of great importance for fundamental research and real-world applications. However, current experimental designs and computational modelings of antifouling materials still retain empirical flavor due to the data complexity of polymers and their associated structures/properties. In this work, we developed a data-driven, machine learning workflow, in combination with an in-house benchmark dataset of antifouling polymer brushes, to discover the potential antifouling property of existing polymer brushes using the descriptor-based artificial neural network (ANN) model and design the new antifouling polymer brushes using the group-based supporting vector regression (SVR) model. The resultant two machine learning models not only demonstrated their reliability, predictivity, and applicability, but also established the composition-structure-property relationships using both descriptors and functional groups. Finally, we synthesized different repurposed and newly designed polymer brushes, as predicted by ANN and SVR models, all of which exhibited excellent surface resistance to protein adsorption from undiluted human blood serum and plasma at optimal film thicknesses. Overall, our data-driven machine learning models can be used as an intelligent tool for determining, repurposing, and designing new superior antifouling materials beyond polymer brushes.
引用
收藏
页数:12
相关论文
共 80 条
[1]   A database for using machine learning and data mining techniques for coronary artery disease diagnosis [J].
Alizadehsani, R. ;
Roshanzamir, M. ;
Abdar, M. ;
Beykikhoshk, A. ;
Khosravi, A. ;
Panahiazar, M. ;
Koohestani, A. ;
Khozeimeh, F. ;
Nahavandi, S. ;
Sarrafzadegan, N. .
SCIENTIFIC DATA, 2019, 6 (1)
[2]   Potential of synthetic chalcone derivatives to prevent marine biofouling [J].
Almeida, J. R. ;
Moreira, J. ;
Pereira, D. ;
Pereira, S. ;
Antunes, J. ;
Palmeira, A. ;
Vasconcelos, V. ;
Pinto, M. ;
Correia-da-Silva, M. ;
Cidade, H. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 643 :98-106
[3]   Zwitterionic Poly(amino acid methacrylate) Brushes [J].
Alswieleh, Abdullah M. ;
Cheng, Nan ;
Canton, Irene ;
Ustbas, Burcin ;
Xue, Xuan ;
Ladmiral, Vincent ;
Xia, Sijing ;
Ducker, Robert E. ;
El Zubir, Osama ;
Cartron, Michael L. ;
Hunter, C. Neil ;
Leggett, Graham J. ;
Armes, Steven P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (26) :9404-9413
[4]   Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning [J].
Balachandran, Prasanna V. ;
Kowalski, Benjamin ;
Sehirlioglu, Alp ;
Lookman, Turab .
NATURE COMMUNICATIONS, 2018, 9
[5]   Prediction of water stability of metal-organic frameworks using machine learning [J].
Batra, Rohit ;
Chen, Carmen ;
Evans, Tania G. ;
Walton, Krista S. ;
Ramprasad, Rampi .
NATURE MACHINE INTELLIGENCE, 2020, 2 (11) :704-+
[6]   Machine Learning in Nanoscience: Big Data at Small Scales [J].
Brown, Keith A. ;
Brittman, Sarah ;
Maccaferri, Nicolo ;
Jariwala, Deep ;
Ceano, Umberto .
NANO LETTERS, 2020, 20 (01) :2-10
[7]   Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties [J].
Chen, Hong ;
Yang, Jintao ;
Xiao, Shengwei ;
Hu, Rundong ;
Bhaway, Sarang M. ;
Vogt, Bryan D. ;
Zhang, Mingzhen ;
Chen, Qiang ;
Ma, Jie ;
Chang, Yung ;
Li, Lingyan ;
Zheng, Jie .
ACTA BIOMATERIALIA, 2016, 40 :62-69
[8]   Synthesis and Characterization of Antifouling Poly(N-acryloylaminoethoxyethanol) with Ultralow Protein Adsorption and Cell Attachment [J].
Chen, Hong ;
Zhang, Mingzhen ;
Yang, Jintao ;
Zhao, Chao ;
Hu, Rundong ;
Chen, Qiang ;
Chang, Yung ;
Zheng, Jie .
LANGMUIR, 2014, 30 (34) :10398-10409
[9]   Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials [J].
Chen, SF ;
Zheng, J ;
Li, LY ;
Jiang, SY .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (41) :14473-14478
[10]   Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials [J].
Chen, Shenfu ;
Li, Lingyan ;
Zhao, Chao ;
Zheng, Jie .
POLYMER, 2010, 51 (23) :5283-5293