On the periodic Schrodinger-Boussinesq system

被引:31
作者
Farah, Luiz Gustavo [1 ,3 ]
Pastor, Ademir [1 ,2 ]
机构
[1] IMECC UNICAMP, BR-13083859 Campinas, SP, Brazil
[2] IMPA Inst Nacl Matemat Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[3] Univ Fed Minas Gerais, Dept Matemat, BR-30123970 Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Schrodinger-Boussinesq system; Global well-posedness; Periodic waves; Orbital stability; SOLITARY WAVES; STABILITY; EQUATIONS; ZAKHAROV;
D O I
10.1016/j.jmaa.2010.03.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local and global well-posedness of the periodic boundary value problem for the nonlinear Schrodinger-Boussinesq system. The existence of periodic traveling-wave solutions as well as the orbital stability of such solutions are also considered. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:330 / 349
页数:20
相关论文
共 35 条
[1]  
ANGULO J, 2006, ADV DIFFERENTIAL EQU, V11, P1321
[2]  
ANGULO J, 2009, PURE APPL ANAL, V8
[3]  
ANGULO J, 2007, INDIANA U MATH J, V56, P847, DOI DOI 10.1512/IUMJ.2007.56.2884
[4]   Interaction equations for short and long dispersive waves [J].
Bekiranov, D ;
Ogawa, T ;
Ponce, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 158 (02) :357-388
[5]  
Bourgain J., 1993, Geom. Funct. Anal., V3, P107
[6]  
Bourgain J., 1999, Amer. Math. Soc. Colloq. Publ., V46
[7]  
Bourgain J., 1993, The KdV equations, GAGA, V3, P209, DOI 10.1007/BF01895688
[8]  
Boussinesq J., 1872, Journal de Mathematiques Pures et Appliquees, V17, P55
[9]  
Byrd P.F., 1971, HDB ELLIPTIC INTEGRA
[10]   Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrodinger systems [J].
Colliander, James ;
Holmer, Justin ;
Tzirakis, Nikolaos .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 360 (09) :4619-4638