Two pennate diatoms, Amphora coffeaeformis and Nitzschia ovalis, were used to evaluate potential responses to the future CO2 and temperature increases with respect to cell-specific growth rate, elemental composition, size, population growth rate, and carrying capacity. Diatoms were subjected to four different treatments over a 2 week period (approximately 4 generations): a control (28A degrees C and present-day CO2, similar to 400 ppm), high CO2 (28A degrees C with high CO2, similar to 750 ppm), high temperature (31A degrees C and present-day CO2, similar to 400 ppm), and greenhouse-effect treatment (31A degrees C with high CO2, similar to 750 ppm). The results indicated that both the cell-specific growth rates and the carrying capacity of A. coffeaeformis decreased at the higher temperature treatment, whereas N. ovalis did not differ among all treatments. No significant difference was found in either species' elemental cell composition, but higher C:N and C:P ratios were observed for A. coffeaeformis and N. ovalis, respectively, in high CO2 and greenhouse-effect treatments. Smaller cell sizes were observed for both species under the greenhouse-effect treatment, a phenomenon that could alter benthic food webs in the future.