Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of typical forests in China

被引:16
作者
Ren, Hongge [1 ,2 ]
Zhang, Li [1 ]
Yan, Min [1 ]
Tian, Xin [3 ]
Zheng, Xingbo [4 ,5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Forestry, Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China
[4] Chinese Acad Sci, Inst Appl Ecol, Key Lab Forest Ecol & Management, Shenyang 110016, Peoples R China
[5] Chinese Acad Sci, Res Stn Changbai Mt Forest Ecosyst, Antu 133613, Jilin, Peoples R China
来源
FOREST ECOSYSTEMS | 2022年 / 9卷
基金
中国国家自然科学基金;
关键词
Sensitivity analysis; Biome-BGCMuSo; Productivity; Regression analysis; EFAST; BGC MODEL; ALPINE SHRUBLAND; ECOSYSTEM MODEL; CARBON; CLIMATE; FLUXES; SIMULATION; FIXATION; EXCHANGE; NITROGEN;
D O I
10.1016/j.fecs.2022.100011
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Background: Process-based models are widely used to simulate forest productivity, but complex parameterization and calibration challenge the application and development of these models. Sensitivity analysis of numerous parameters is an essential step in model calibration and carbon flux simulation. However, parameters are not dependent on each other, and the results of sensitivity analysis usually vary due to different forest types and regions. Hence, global and representative sensitivity analysis would provide reliable information for simple calibration. Methods: To determine the contributions of input parameters to gross primary productivity (GPP) and net primary productivity (NPP), regression analysis and extended Fourier amplitude sensitivity testing (EFAST) were conducted for Biome-BGCMuSo to calculate the sensitivity index of the parameters at four observation sites under climate gradient from ChinaFLUX. Results: Generally, GPP and NPP were highly sensitive to C:N-leaf (C:N of leaves), W-int (canopy water interception coefficient), k (canopy light extinction coefficient), FLNR (fraction of leaf N in Rubisco), MRpern (coefficient of linear relationship between tissue N and maintenance respiration), VPDf (vapor pressure deficit complete conductance reduction), and SLA1 (canopy average specific leaf area in phenological phase 1) at all observation sites. Various sensitive parameters occurred at four observation sites within different climate zones. GPP and NPP were particularly sensitive to FLNR, SLA1 and W-int, and C:N-leaf in temperate, alpine and subtropical zones, respectively. Conclusions: The results indicated that sensitivity parameters of China's forest ecosystems change with climate gradient. We found that parameter calibration should be performed according to plant functional type (PFT), and more attention needs to be paid to the differences in climate and environment. These findings contribute to determining the target parameters in field experiments and model calibration.
引用
收藏
页数:13
相关论文
共 67 条
  • [1] A performance comparison of sensitivity analysis methods for building energy models
    Anh-Tuan Nguyen
    Reiter, Sigrid
    [J]. BUILDING SIMULATION, 2015, 8 (06) : 651 - 664
  • [2] Sensitivity Analysis of an OLS Multiple Regression Inference with Respect to Possible Linear Endogeneity in the Explanatory Variables, for Both Modest and for Extremely Large Samples
    Ashley, Richard A.
    Parmeter, Christopher F.
    [J]. ECONOMETRICS, 2020, 8 (01)
  • [3] Tropical forests are a net carbon source based on aboveground measurements of gain and loss
    Baccini, A.
    Walker, W.
    Carvalho, L.
    Farina, M.
    Sulla-Menashe, D.
    Houghton, R. A.
    [J]. SCIENCE, 2017, 358 (6360) : 230 - 233
  • [4] Pulse Increase of Soil N2O Emission in Response to N Addition in a Temperate Forest on Mt Changbai, Northeast China
    Bai, Edith
    Li, Wei
    Li, Shanlong
    Sun, Jianfei
    Peng, Bo
    Dai, Weiwei
    Jiang, Ping
    Han, Shijie
    [J]. PLOS ONE, 2014, 9 (07):
  • [5] Forest carbon sink neutralized by pervasive growth-lifespan trade-offs
    Brienen, R. J. W.
    Caldwell, L.
    Duchesne, L.
    Voelker, S.
    Barichivich, J.
    Baliva, M.
    Ceccantini, G.
    Di Filippo, A.
    Helama, S.
    Locosselli, G. M.
    Lopez, L.
    Piovesan, G.
    Schongart, J.
    Villalba, R.
    Gloor, E.
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [6] Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees
    Chu, Chengjin
    Lutz, James A.
    Kral, Kamil
    Vrska, Tomas
    Yin, Xue
    Myers, Jonathan A.
    Abiem, Iveren
    Alonso, Alfonso
    Bourg, Norm
    Burslem, David F. R. P.
    Cao, Min
    Chapman, Hazel
    Condit, Richard
    Fang, Suqin
    Fischer, Gunter A.
    Gao, Lianming
    Hao, Zhanqin
    Hau, Billy C. H.
    He, Qing
    Hector, Andrew
    Hubbell, Stephen P.
    Jiang, Mingxi
    Jin, Guangze
    Kenfack, David
    Lai, Jiangshan
    Li, Buhang
    Li, Xiankun
    Li, Yide
    Lian, Juyu
    Lin, Luxiang
    Liu, Yankun
    Liu, Yu
    Luo, Yahuang
    Ma, Keping
    McShea, William
    Memiaghe, Herve
    Mi, Xiangcheng
    Ni, Ming
    O'Brien, Michael J.
    de Oliveira, Alexandre A.
    Orwig, David A.
    Parker, Geoffrey G.
    Qiao, Xiujuan
    Ren, Haibao
    Reynolds, Glen
    Sang, Weiguo
    Shen, Guochun
    Su, Zhiyao
    Sui, Xinghua
    Sun, I-Fang
    [J]. ECOLOGY LETTERS, 2019, 22 (02) : 245 - 255
  • [7] Mapping carbon accumulation potential from global natural forest regrowth
    Cook-Patton, Susan C.
    Leavitt, Sara M.
    Gibbs, David
    Harris, Nancy L.
    Lister, Kristine
    Anderson-Teixeira, Kristina J.
    Briggs, Russell D.
    Chazdon, Robin L.
    Crowther, Thomas W.
    Ellis, Peter W.
    Griscom, Heather P.
    Herrmann, Valentine
    Holl, Karen D.
    Houghton, Richard A.
    Larrosa, Cecilia
    Lomax, Guy
    Lucas, Richard
    Madsen, Palle
    Malhi, Yadvinder
    Paquette, Alain
    Parker, John D.
    Paul, Keryn
    Routh, Devin
    Roxburgh, Stephen
    Saatchi, Sassan
    van den Hoogen, Johan
    Walker, Wayne S.
    Wheeler, Charlotte E.
    Wood, Stephen A.
    Xu, Liang
    Griscom, Bronson W.
    [J]. NATURE, 2020, 585 (7826) : 545 - +
  • [8] Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model
    Cox, PM
    Betts, RA
    Jones, CD
    Spall, SA
    Totterdell, IJ
    [J]. NATURE, 2000, 408 (6809) : 184 - 187
  • [9] Dagon K., 2020, Adv. Stat. Clim. Meteorol. Oceanogr., V6, P223, DOI [10.5194/ascmo-6-223-2020, DOI 10.5194/ASCMO-6-223-2020]
  • [10] Dai X.Q., 2021, CHIN SCI DATA, V6, P36, DOI [10.11922/csdata.2020.0036.zh, DOI 10.11922/CSDATA.2020.0036.ZH]