Sensitivity analysis of Biome-BGCMuSo for gross and net primary productivity of typical forests in China

被引:20
作者
Ren, Hongge [1 ,2 ]
Zhang, Li [1 ]
Yan, Min [1 ]
Tian, Xin [3 ]
Zheng, Xingbo [4 ,5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Forestry, Inst Forest Resource Informat Tech, Beijing 100091, Peoples R China
[4] Chinese Acad Sci, Inst Appl Ecol, Key Lab Forest Ecol & Management, Shenyang 110016, Peoples R China
[5] Chinese Acad Sci, Res Stn Changbai Mt Forest Ecosyst, Antu 133613, Jilin, Peoples R China
来源
FOREST ECOSYSTEMS | 2022年 / 9卷
基金
中国国家自然科学基金;
关键词
Sensitivity analysis; Biome-BGCMuSo; Productivity; Regression analysis; EFAST; BGC MODEL; ALPINE SHRUBLAND; ECOSYSTEM MODEL; CARBON; CLIMATE; FLUXES; SIMULATION; FIXATION; EXCHANGE; NITROGEN;
D O I
10.1016/j.fecs.2022.100011
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Background: Process-based models are widely used to simulate forest productivity, but complex parameterization and calibration challenge the application and development of these models. Sensitivity analysis of numerous parameters is an essential step in model calibration and carbon flux simulation. However, parameters are not dependent on each other, and the results of sensitivity analysis usually vary due to different forest types and regions. Hence, global and representative sensitivity analysis would provide reliable information for simple calibration. Methods: To determine the contributions of input parameters to gross primary productivity (GPP) and net primary productivity (NPP), regression analysis and extended Fourier amplitude sensitivity testing (EFAST) were conducted for Biome-BGCMuSo to calculate the sensitivity index of the parameters at four observation sites under climate gradient from ChinaFLUX. Results: Generally, GPP and NPP were highly sensitive to C:N-leaf (C:N of leaves), W-int (canopy water interception coefficient), k (canopy light extinction coefficient), FLNR (fraction of leaf N in Rubisco), MRpern (coefficient of linear relationship between tissue N and maintenance respiration), VPDf (vapor pressure deficit complete conductance reduction), and SLA1 (canopy average specific leaf area in phenological phase 1) at all observation sites. Various sensitive parameters occurred at four observation sites within different climate zones. GPP and NPP were particularly sensitive to FLNR, SLA1 and W-int, and C:N-leaf in temperate, alpine and subtropical zones, respectively. Conclusions: The results indicated that sensitivity parameters of China's forest ecosystems change with climate gradient. We found that parameter calibration should be performed according to plant functional type (PFT), and more attention needs to be paid to the differences in climate and environment. These findings contribute to determining the target parameters in field experiments and model calibration.
引用
收藏
页数:13
相关论文
共 63 条
[1]   A performance comparison of sensitivity analysis methods for building energy models [J].
Anh-Tuan Nguyen ;
Reiter, Sigrid .
BUILDING SIMULATION, 2015, 8 (06) :651-664
[2]   Sensitivity Analysis of an OLS Multiple Regression Inference with Respect to Possible Linear Endogeneity in the Explanatory Variables, for Both Modest and for Extremely Large Samples [J].
Ashley, Richard A. ;
Parmeter, Christopher F. .
ECONOMETRICS, 2020, 8 (01)
[3]   Tropical forests are a net carbon source based on aboveground measurements of gain and loss [J].
Baccini, A. ;
Walker, W. ;
Carvalho, L. ;
Farina, M. ;
Sulla-Menashe, D. ;
Houghton, R. A. .
SCIENCE, 2017, 358 (6360) :230-233
[4]   Pulse Increase of Soil N2O Emission in Response to N Addition in a Temperate Forest on Mt Changbai, Northeast China [J].
Bai, Edith ;
Li, Wei ;
Li, Shanlong ;
Sun, Jianfei ;
Peng, Bo ;
Dai, Weiwei ;
Jiang, Ping ;
Han, Shijie .
PLOS ONE, 2014, 9 (07)
[5]   Forest carbon sink neutralized by pervasive growth-lifespan trade-offs [J].
Brienen, R. J. W. ;
Caldwell, L. ;
Duchesne, L. ;
Voelker, S. ;
Barichivich, J. ;
Baliva, M. ;
Ceccantini, G. ;
Di Filippo, A. ;
Helama, S. ;
Locosselli, G. M. ;
Lopez, L. ;
Piovesan, G. ;
Schongart, J. ;
Villalba, R. ;
Gloor, E. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees [J].
Chu, Chengjin ;
Lutz, James A. ;
Kral, Kamil ;
Vrska, Tomas ;
Yin, Xue ;
Myers, Jonathan A. ;
Abiem, Iveren ;
Alonso, Alfonso ;
Bourg, Norm ;
Burslem, David F. R. P. ;
Cao, Min ;
Chapman, Hazel ;
Condit, Richard ;
Fang, Suqin ;
Fischer, Gunter A. ;
Gao, Lianming ;
Hao, Zhanqin ;
Hau, Billy C. H. ;
He, Qing ;
Hector, Andrew ;
Hubbell, Stephen P. ;
Jiang, Mingxi ;
Jin, Guangze ;
Kenfack, David ;
Lai, Jiangshan ;
Li, Buhang ;
Li, Xiankun ;
Li, Yide ;
Lian, Juyu ;
Lin, Luxiang ;
Liu, Yankun ;
Liu, Yu ;
Luo, Yahuang ;
Ma, Keping ;
McShea, William ;
Memiaghe, Herve ;
Mi, Xiangcheng ;
Ni, Ming ;
O'Brien, Michael J. ;
de Oliveira, Alexandre A. ;
Orwig, David A. ;
Parker, Geoffrey G. ;
Qiao, Xiujuan ;
Ren, Haibao ;
Reynolds, Glen ;
Sang, Weiguo ;
Shen, Guochun ;
Su, Zhiyao ;
Sui, Xinghua ;
Sun, I-Fang .
ECOLOGY LETTERS, 2019, 22 (02) :245-255
[7]   Mapping carbon accumulation potential from global natural forest regrowth [J].
Cook-Patton, Susan C. ;
Leavitt, Sara M. ;
Gibbs, David ;
Harris, Nancy L. ;
Lister, Kristine ;
Anderson-Teixeira, Kristina J. ;
Briggs, Russell D. ;
Chazdon, Robin L. ;
Crowther, Thomas W. ;
Ellis, Peter W. ;
Griscom, Heather P. ;
Herrmann, Valentine ;
Holl, Karen D. ;
Houghton, Richard A. ;
Larrosa, Cecilia ;
Lomax, Guy ;
Lucas, Richard ;
Madsen, Palle ;
Malhi, Yadvinder ;
Paquette, Alain ;
Parker, John D. ;
Paul, Keryn ;
Routh, Devin ;
Roxburgh, Stephen ;
Saatchi, Sassan ;
van den Hoogen, Johan ;
Walker, Wayne S. ;
Wheeler, Charlotte E. ;
Wood, Stephen A. ;
Xu, Liang ;
Griscom, Bronson W. .
NATURE, 2020, 585 (7826) :545-+
[8]   Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model [J].
Cox, PM ;
Betts, RA ;
Jones, CD ;
Spall, SA ;
Totterdell, IJ .
NATURE, 2000, 408 (6809) :184-187
[9]  
Dagon K., 2020, Advances in Statistical Climatology, Meteorology and Oceanography, V6, P223, DOI [DOI 10.5194/ASCMO-6-223-2020, 10.5194/ascmo-6-223-2020]
[10]  
Dai X., 2021, China Sci. Data, V6, P1, DOI [10.11922/csdata.2020.0036.zh, DOI 10.11922/CSDATA.2020.0036.ZH]