Lower order perturbations of Dirichlet processes

被引:2
作者
Röckner, M
Zhang, TS
机构
[1] Univ Bielefeld, Fac Math, D-33501 Bielefeld, Germany
[2] Univ Manchester, Dept Math, Manchester M13 9PL, Lancs, England
关键词
D O I
10.1515/form.2003.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider lower order perturbations M of symmetric diffusions M-0 and prove that M is locally absolutely continuous with respect to M-0 up to life time. The novelty is that the absolute value of the drift b and zero order part c are merely assumed to be in L-d (R-d) + L-infinity(R-d), and Ld/2(R-d)+L-infinity(R-d). So, \b\(2) and c are not in the Kato-class (as is the case when \b\(2), \c\ is an element of L-p(R-d) + L-infinity(R-d) with p > d/2). We also consider the case where an adjoint drift is present. Finally, we use these results to prove new convergence results for diffusions.
引用
收藏
页码:285 / 297
页数:13
相关论文
共 9 条
[1]  
FUKUSHIMA M, 1994, OSHIMA TAKEDA DIRICH
[2]  
KUNITA H, 1976, LECT NOTES MATH, V511, P44
[3]   Integrability of functionals of Dirichlet processes, probabilistic representations of semigroups, and estimates of heat kernels [J].
Lunt, J ;
Lyons, TJ ;
Zhang, TS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 153 (02) :320-342
[4]  
Lyons T., 1988, ASTERISQUE, V157, P248
[5]   NOTE ON CONVERGENCE OF DIRICHLET PROCESSES [J].
LYONS, TJ ;
ZHANG, TS .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1993, 25 :353-356
[6]  
Ma Z. M., 1992, INTRO THEORY NONSYMM
[7]   QUASI-REGULAR DIRICHLET FORMS - EXAMPLES AND COUNTEREXAMPLES [J].
ROCKNER, M ;
SCHMULAND, B .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (01) :165-200
[8]  
Rockner M, 1997, OSAKA J MATH, V34, P923
[9]  
STANNAT W, 1999, 678 AM MATH SOC, P678