An evolutionary K-means algorithm for clustering time series data

被引:0
|
作者
Zhang, H [1 ]
Ho, TB [1 ]
Lin, MS [1 ]
机构
[1] Japan Adv Inst Sci & Technol, Tatsunokuchi, Ishikawa 9231292, Japan
关键词
time series; clustering; genetic algorithms; K-means;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
It is well known that the K-means clustering algorithm is easy to get stuck at locally optimal points for high dimensional data. Many initialization techniques have been proposed to attack this problem, but with only limited success. In this paper we propose an evolutionary K-means algorithm to attack this problem. The proposed algorithm combines Genetic Algorithms and K-means algorithm together for improving the search ability of the K-means algorithm. We rearrange the clusters in crossover operation based on the distance of clustering centers to avoid generating meaningless offspring. A new genetic operator called swap is proposed to replace the traditional mutation operator for avoiding producing invalid offspring. Experiments performed on some publicly available time series data sets demonstrate the effectiveness and efficiency of the proposed algorithm.
引用
收藏
页码:1282 / 1287
页数:6
相关论文
共 50 条
  • [31] Using K-Means Clustering Algorithm for Handling Data Precision
    Suganthi, P.
    Kala, K.
    Balasubramanian, C.
    2016 INTERNATIONAL CONFERENCE ON COMPUTING TECHNOLOGIES AND INTELLIGENT DATA ENGINEERING (ICCTIDE'16), 2016,
  • [32] The Border K-Means Clustering Algorithm for One Dimensional Data
    Froese, Ryan
    Klassen, James W.
    Leung, Carson K.
    Loewen, Tyler S.
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 35 - 42
  • [33] Canopy with k-means Clustering Algorithm for Big Data Analytics
    Sagheer, Noor S.
    Yousif, Suhad A.
    FOURTH INTERNATIONAL CONFERENCE OF MATHEMATICAL SCIENCES (ICMS 2020), 2021, 2334
  • [34] K-MEANS plus : A DEVELOPED CLUSTERING ALGORITHM FOR BIG DATA
    Niu, Kun
    Gao, Zhipeng
    Jiao, Haizhen
    Deng, Nanjie
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 141 - 144
  • [35] Modified k-Means Clustering Algorithm
    Patel, Vaishali R.
    Mehta, Rupa G.
    COMPUTATIONAL INTELLIGENCE AND INFORMATION TECHNOLOGY, 2011, 250 : 307 - +
  • [36] Modified K-means clustering algorithm
    Li, Wei
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 4, PROCEEDINGS, 2008, : 618 - 621
  • [37] The MinMax k-Means clustering algorithm
    Tzortzis, Grigorios
    Likas, Aristidis
    PATTERN RECOGNITION, 2014, 47 (07) : 2505 - 2516
  • [38] The global k-means clustering algorithm
    Likas, A
    Vlassis, N
    Verbeek, JJ
    PATTERN RECOGNITION, 2003, 36 (02) : 451 - 461
  • [39] Improved K-means clustering algorithm
    Zhang, Zhe
    Zhang, Junxi
    Xue, Huifeng
    CISP 2008: FIRST INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOL 5, PROCEEDINGS, 2008, : 169 - 172
  • [40] A k-means based clustering algorithm
    Bloisi, Domenico Daniele
    Locchi, Luca
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 109 - 118