Robust superhydrophobic-superoleophilic polytetrafluoroethylene nanofibrous membrane for oil/water separation

被引:186
作者
Qing, Weihua [1 ]
Shi, Xiaonan [1 ]
Deng, Yajun [2 ]
Zhang, Weidong [2 ]
Wang, Jianqiang [1 ]
Tang, Chuyang Y. [1 ]
机构
[1] Univ Hong Kong, Dept Civil Engn, Pokfulam 999077, Hong Kong, Peoples R China
[2] Beijing Univ Chem Technol, Beijing Key Lab Membrane Sci & Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
中国国家自然科学基金;
关键词
Superhydrophobic; Superoleophilic; Oil/water separation; Polytetrafluoroethylene; Nanofibrous membrane; WASTE-WATER TREATMENT; POROUS MEMBRANES; DISTILLATION; OIL; SURFACES; PTFE; PERFORMANCE;
D O I
10.1016/j.memsci.2017.06.060
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A robust polytetrafluoroethylene (PTFE) nanofibrous membrane was prepared by a simple electrospinning-sintering strategy for efficient oil/water separation. Specifically, a PTFE@PVA hybrid nanofibrous membrane in which PTFE particles were uniformly distributed in PVA nanofiber was first prepared by electrospinning, then a sintering treatment was applied to obtain the PTFE nanofibrous membrane. Electron microscopic characterization revealed that the membrane was formed by a sintering mechanism of a fast decomposition of PVA followed by a slower fusion of PTFE particles. Spectroscopic characterization confirmed that the PVA polymer was completely decomposed after 8 h of sintering. The resulting membrane had a ratio of fluorine to carbon atomic ratio of 2.0, indicating that a pure PTFE nanofibrous membrane was obtained. The as-prepared PTFE membrane exhibited superhydrophobic property with a water contact angle of 155.0 degrees and a sliding angle of 5.1 degrees. Its tensile strength was as high as 19.7 MPa, indicating excellent mechanical strength. The membrane was successfully applied for gravity-driven oil/water separation with a permeate flux of 1215 L m(-2) h(-1). Moreover, its excellent corrosion resistance and mechanical stability suggest that the PTFE nanofibrous membrane could stand harsh environment existing in industrial oil/water separation processes.
引用
收藏
页码:354 / 361
页数:8
相关论文
共 41 条
[1]   PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation [J].
An, Alicia Kyoungjin ;
Guo, Jiaxin ;
Lee, Eui-Jong ;
Jeong, Sanghyun ;
Zhao, Yanhua ;
Wang, Zuankai ;
Leiknes, TorOve .
JOURNAL OF MEMBRANE SCIENCE, 2017, 525 :57-67
[2]   Study of Superhydrophobic Electrospun Nanocomposite Fibers for Energy Systems [J].
Asmatulu, Ramazan ;
Ceylan, Muhammet ;
Nuraje, Nurxat .
LANGMUIR, 2011, 27 (02) :504-507
[3]   Plasma treatment of expanded PTFE offers a way to a biofunctionalization of its surface [J].
Baquey, C ;
Palumbo, F ;
Porte-Durrieu, MC ;
Legeay, G ;
Tressaud, A ;
d'Agostino, R .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1999, 151 (1-4) :255-262
[4]   Superhydrophobic electrosprayed PTFE [J].
Burkarter, E. ;
Saul, C. K. ;
Thomazi, F. ;
Cruz, N. C. ;
Roman, L. S. ;
Schreiner, W. H. .
SURFACE & COATINGS TECHNOLOGY, 2007, 202 (01) :194-198
[5]   Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation [J].
Cao, Chunyan ;
Ge, Mingzheng ;
Huang, Jianying ;
Li, Shuhui ;
Deng, Shu ;
Zhang, Songnan ;
Chen, Zhong ;
Zhang, Keqin ;
Al-Deyab, Salem S. ;
Lai, Yuekun .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (31) :12179-12187
[6]   Recent advances in designing superhydrophobic surfaces [J].
Celia, Elena ;
Darmanin, Thierry ;
de Givenchy, Elisabeth Taffin ;
Amigoni, Sonia ;
Guittard, Frederic .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2013, 402 :1-18
[7]   Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process [J].
Gohari, R. Jamshidi ;
Halakoo, E. ;
Lau, W. J. ;
Kassim, M. A. ;
Matsuura, T. ;
Ismail, A. F. .
RSC ADVANCES, 2014, 4 (34) :17587-17596
[8]   Electrospinning Superhydrophobic Fibers Using Surface Segregating End-Functionalized Polymer Additives [J].
Hardman, Sarah J. ;
Muhamad-Sarih, Norazilawati ;
Riggs, Helen J. ;
Thompson, Richard L. ;
Rigby, Jonathan ;
Bergius, William N. A. ;
Hutchings, Lian R. .
MACROMOLECULES, 2011, 44 (16) :6461-6470
[9]   Structure generation in PTFE porous membranes induced by the uniaxial and biaxial stretching operations [J].
Kurumada, K ;
Kitamura, T ;
Fukumoto, N ;
Oshima, M ;
Tanigaki, M ;
Kanazawa, S .
JOURNAL OF MEMBRANE SCIENCE, 1998, 149 (01) :51-57
[10]   Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct contact membrane distillation [J].
Lee, Eui-Jong ;
An, Alicia Kyoungjin ;
He, Tao ;
Woo, Yun Chul ;
Shon, Ho Kyong .
JOURNAL OF MEMBRANE SCIENCE, 2016, 520 :145-154