Congruences concerning Bernoulli numbers and Bernoulli polynomials

被引:97
作者
Sun, ZH [1 ]
机构
[1] Huaiyin Teachers Coll, Dept Math, Huaiyin 223001, Jiangsu, Peoples R China
关键词
D O I
10.1016/S0166-218X(00)00184-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let {B-n(x)} denote Bernoulli polynomials. In this paper we generalize Kummer's congruences by determining Bk(p-1)+b(x)/(k(p - 1) + b)(mod p(n), where p is an odd prime, x is a p-integral rational number and p -1 + b. As applications we obtain explicit formulae for Sigma(x=1)(p-1) (1/x(k)) mod p(3)), Sigma(x=1)((p-1)/2) (1/x(k))(mod p(3)), (p - 1)!(mod p(3)) and A(r)(m, p)(modp), where k is an element of {1,2,..., p - 1} and A(r)(m, p) is the least positive solution of the congruence px = r(mod m). We also establish similar congruences for generalized Bernoulli numbers {B-n,B-chi}. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:193 / 223
页数:31
相关论文
共 20 条
[1]  
[Anonymous], TRAITE ELEMENTAIRE N
[2]  
[Anonymous], 1939, DUKE MATH J, DOI 10.1215/S0012-7094-39-00546-6
[3]   A THEOREM OF GLAISHER [J].
CARLITZ, L .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (03) :306-316
[4]  
Comtet L., 1974, Advanced combinatorics. The art of finite and infinite expansions
[5]  
Dickson L. E., 1952, Divisibility and Primality, V1
[6]   A NEW CRITERION FOR THE FIRST CASE OF FERMAT LAST THEOREM [J].
DILCHER, K ;
SKULA, L .
MATHEMATICS OF COMPUTATION, 1995, 64 (209) :363-392
[7]  
DILCHER K, 1991, QUEENS PAPERS PURE A, V87
[8]  
ERNNVALL R, 1979, ANN U TURKU A, V1, P1
[9]  
GILLESPIE FS, 1992, FIBONACCI QUART, V30, P349
[10]  
Glaisher J. W. L., 1900, Q J MATH, V31, P321