A fast direct algorithm for implementing a high-order finite element method on rectangles as applied to boundary value problems for the Poisson equation

被引:3
作者
Zlotnik, A. A. [1 ]
Zlotnik, I. A. [2 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[2] Settlement Depository Co, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
D O I
10.1134/S1064562417020089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fast direct and inverse algorithms for expansion in terms of eigenvectors of one-dimensional eigenvalue problems for a high-order finite element method (FEM) are proposed based on the fast discrete Fourier transform. They generalize logarithmically optimal Fourier algorithms for solving boundary value problems for Poisson-type equations on rectangular meshes to high-order FEM. The algorithms can be extended to the multidimensional case and can be applied to nonstationary problems.
引用
收藏
页码:129 / 135
页数:7
相关论文
共 7 条
  • [1] Matrix decomposition algorithms for elliptic boundary value problems: a survey
    Bialecki, Bernard
    Fairweather, Graeme
    Karageorghis, Andreas
    [J]. NUMERICAL ALGORITHMS, 2011, 56 (02) : 253 - 295
  • [2] Britanak V., 2007, Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations
  • [3] Matrix decomposition algorithms for the C0-quadratic finite element Galerkin method
    Du, Kui
    Fairweather, Graeme
    Nguyen, Que N.
    Sun, Weiwei
    [J]. BIT NUMERICAL MATHEMATICS, 2009, 49 (03) : 509 - 526
  • [4] Samarskii A. A., 1978, NUMERICAL METHODS GR
  • [5] Strang G., 1973, An analysis of the finite element method
  • [6] METHODS OF CYCLIC REDUCTION, FOURIER-ANALYSIS AND FACR ALGORITHM FOR DISCRETE SOLUTION OF POISSONS EQUATION ON A RECTANGLE
    SWARZTRAUBER, PN
    [J]. SIAM REVIEW, 1977, 19 (03) : 490 - 501
  • [7] FINITE ELEMENT METHOD WITH DISCRETE TRANSPARENT BOUNDARY CONDITIONS FOR THE TIME-DEPENDENT 1D SCHRODINGER EQUATION
    Zlotnik, Alexander
    Zlotnik, Ilya
    [J]. KINETIC AND RELATED MODELS, 2012, 5 (03) : 639 - 667