Solitary waves travelling along an unsmooth boundary

被引:137
作者
He, Ji-Huan [1 ,2 ,3 ]
Qie, Na [1 ]
He, Chun-Hui [4 ]
机构
[1] Xian Univ Architecture & Technol, Sch Sci, Xian, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Henan, Peoples R China
[3] Soochow Univ, Coll Text & Clothing Engn, Natl Engn Lab Modern Silk, 199 Ren Ai Rd, Suzhou, Peoples R China
[4] Xian Univ Architecture & Technol, Sch Civil Engn, Xian 710055, Peoples R China
关键词
Solitary wave; Fractal derivative; Two-scale fractal; Fractal variational theory; FRACTAL CALCULUS; MODEL;
D O I
10.1016/j.rinp.2021.104104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is well-known that the boundary conditions will greatly affect the wave shape of a nonlinear wave equation. This paper reveals that the peak of a solitary wave is weakly affected by the unsmooth boundary. A fractal Korteweg-de Vries (KdV) equation is used as an example to show the solution properties of a solitary wave travelling along an unsmooth boundary. A fractal variational principle is established in a fractal space and its solitary wave solution is obtained, and its wave shape is discussed for different fractal dimensions of the boundary.
引用
收藏
页数:4
相关论文
共 44 条
[1]   THE FRACTIONAL COMPLEX TRANSFORM: A NOVEL APPROACH TO THE TIME-FRACTIONAL SCHRoDINGER EQUATION [J].
Ain, Qura Tul ;
He, Ji-Huan ;
Anjum, Naveed ;
Ali, Muhammad .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (07)
[2]   Constructions of solitary travelling wave solutions for Ito integro-differential equation arising in plasma physics [J].
Alharbi, Abdulghani R. ;
Almatrafi, M. B. ;
Lotfy, Kh. .
RESULTS IN PHYSICS, 2020, 19
[3]   New solitary wave solutions of a highly dispersive physical model [J].
Ali, Khalid K. ;
Hadhoud, Adel R. .
RESULTS IN PHYSICS, 2020, 17
[4]   ON TWO-SCALE DIMENSION AND ITS APPLICATIONS [J].
Aln, Qura Tul ;
He, Ji-Huan .
THERMAL SCIENCE, 2019, 23 (03) :1707-1712
[5]  
Cattani C., 2018, J Adv Eng Tech, V2, P224, DOI [10.25073/jaec.201824.225, DOI 10.25073/JAEC.201824.225]
[6]   Stability analysis of fourth-order iterative method for finding multiple roots of non-linear equations [J].
Cordero, Alicia ;
Jaiswal, Jai P. ;
Torregrosa, Juan R. .
APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2019, 4 (01) :43-56
[7]   A fractal model for current generation in porous electrodes [J].
Elias-Zuniga, Alex ;
Manuel Palacios-Pineda, Luis ;
Jimenez-Cedeno, Isaac H. ;
Martinez-Romero, Oscar ;
Olvera-Trejo, Daniel .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2021, 880
[8]   EQUIVALENT POWER-FORM REPRESENTATION OF THE FRACTAL TODA OSCILLATOR [J].
Elias-Zuniga, Alex ;
Manuel Palacios-Pineda, Luis ;
Jimenez-Cedeno, Isaac H. ;
Martinez-Romero, Oscar ;
Olvera Trejo, Daniel .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (02)
[9]   He's frequency-amplitude formulation for nonlinear oscillators using Jacobi elliptic functions [J].
Elias-Zuniga, Alex ;
Manuel Palacios-Pineda, Luis ;
Jimenez-Cedeno, Isaac H. ;
Martinez-Romero, Oscar ;
Olvera Trejo, Daniel .
JOURNAL OF LOW FREQUENCY NOISE VIBRATION AND ACTIVE CONTROL, 2020, 39 (04) :1216-1223
[10]   A FRACTAL MODEL FOR THE INTERNAL TEMPERATURE RESPONSE OF A POROUS CONCRETE [J].
He, Chun-Hui ;
Liu, Chao ;
He, Ji-Huan ;
Sedighi, Hamid M. ;
Shokri, Ali ;
Gepreel, Khaled A. .
APPLIED AND COMPUTATIONAL MATHEMATICS, 2022, 21 (01) :71-77