Existence of positive solutions for a Neumann boundary value problem on the half-line via coincidence degree

被引:0
作者
Djafri, S. [1 ]
Moussaoui, Toufik [2 ]
机构
[1] Univ Sci & Technol Houari Boumedienne, Algiers, Algeria
[2] ENS Kouba, Dept Math, Lab Fixed Point Theory & Applicat, Algiers, Algeria
关键词
Coincidence degree; boundary value problem; positive solutions; unbounded interval;
D O I
10.1515/apam-2018-0087
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we are interested in the study of the existence of positive solutions for the following nonlinear boundary value problem on the half-line: {-u ''(x) = q(x)f(x, u, u'), x is an element of(0, +infinity), u'(0) = u'(+infinity) = 0, where q : R+ -> R+ is a positive measurable function such that integral(+infinity)(0) q(x) dx = 1 and f : R+ x R-2 -> R is q-Caratheodory.
引用
收藏
页码:447 / 458
页数:12
相关论文
共 14 条
[1]  
Agarwal R.P., 2001, Infinite interval problems for differential, difference and integral equations
[2]  
Carrasco H., 2017, Electron. J. Differential Equations, V2017, P1
[3]  
De Coster C., 2006, Two-Point Boundary Value Problems: Lower and Upper Solutions
[4]  
Diebali S., 2011, ELECT J QUAL THEORY, V2014
[5]   ON THE EXISTENCE OF POSITIVE SOLUTIONS OF ORDINARY DIFFERENTIAL-EQUATIONS [J].
ERBE, LH ;
WANG, HY .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (03) :743-748
[6]  
Feltrin G., 2015, DISCRETE CONTIN DYN, P436
[7]  
Feltrin G, 2015, ADV DIFFERENTIAL EQU, V20, P937
[8]   Multiple positive solutions for a superlinear problem: A topological approach [J].
Feltrin, Guglielmo ;
Zanolin, Fabio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (03) :925-963
[9]  
Gaines R. E., 1977, Coincidence degree, and nonlinear differential equations
[10]  
Mawhin J., 1993, LECT NOTES MATH, V1537, P74