Multiple positive solutions of singular Dirichlet problems on time scales via variational methods

被引:38
作者
Agarwal, Ravi P. [1 ]
Otero-Espinar, Victoria
Perera, Kanishka
Vivero, Dolores R.
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Univ Santiago de Compostela, Dept Anal Matemat, Fac Matemat, Galicia, Spain
关键词
singular; dynamic boundary value problem; multiple positive solutions; variational methods; critical point theory;
D O I
10.1016/j.na.2006.05.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to using variational techniques and critical point theory to derive some sufficient conditions for the existence of multiple positive solutions to a singular second order dynamic equation with homogeneous Dirichlet boundary conditions. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:368 / 381
页数:14
相关论文
共 14 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   General existence principles for nonlocal boundary value problems with φ-laplacian and their applications [J].
Agarwal, Ravi P. ;
O'Regan, Donal ;
Stanek, Svatoslav .
ABSTRACT AND APPLIED ANALYSIS, 2006, :1-30
[3]  
Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
[4]   Multiple positive solutions of singular problems by variational methods [J].
Agarwal, RP ;
Perera, K ;
O'Regan, D .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (03) :817-824
[5]  
AGARWAL RP, IN PRESS CANAD MATH
[6]  
Agarwal RP, 2003, SINGULAR DIFFERENTIA
[7]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[8]   Expression of the Lebesgue Δ-integral on time scales as a usual Lebesgue integral;: application to the calculus of Δ-antiderivatives [J].
Cabada, A ;
Vivero, DR .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (1-2) :194-207
[9]   Criterions for absolute continuity on time scales [J].
Cabada, A ;
Vivero, DR .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (11) :1013-1028
[10]  
Cerami G., 1979, Istit. Lomb. Accad. Sci. Lett. Rend. A, V112, P332