Quaternary Quantum Reed-Muller Codes

被引:0
作者
Yuan, Li [1 ]
机构
[1] Shanghai Dianji Univ, Dept Commun Engn, Shanghai 200240, Peoples R China
来源
2016 3RD INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI) | 2016年
关键词
Quantum error-correction codes; Reed-Muller codes; CSS codes; puncture codes; DISTANCE-3; PREPARATA; KERDOCK;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, quaternary quantum Reed-Muller code construction with Gray map is investigated. Using the proposed approach, generated quaternary quantum code can be gained with short length of codeword. These quantum codes are simple for implementation and low-complexity in the encoding procedure. Therefore, it may be applied in a quantum computer for efficiently correcting quantum errors.
引用
收藏
页码:1170 / 1174
页数:5
相关论文
共 25 条
  • [1] Aliferis P, 2006, QUANTUM INF COMPUT, V6, P97
  • [2] Quantum error detection I: Statement of the problem
    Ashikhmin, AE
    Barg, AM
    Knill, E
    Litsyn, SN
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) : 778 - 788
  • [3] Assmus EF, 1998, HANDBOOK OF CODING THEORY, VOLS I & II, P1269
  • [4] Quaternary Reed-Muller codes
    Borges, J
    Fernández, C
    Phelps, KT
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (07) : 2686 - 2691
  • [5] On Z4-linear Preparata-like and Kerdock-like codes
    Borges, J
    Phelps, KT
    Rifà, J
    Zinoviev, VA
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) : 2834 - 2843
  • [6] Z(4)-Kerdock codes, orthogonal spreads, and extremal euclidean line-sets
    Calderbank, AR
    Cameron, PJ
    Kantor, WM
    Seidel, JJ
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1997, 75 : 436 - 480
  • [7] Good quantum error-correcting codes exist
    Calderbank, AR
    Shor, PW
    [J]. PHYSICAL REVIEW A, 1996, 54 (02): : 1098 - 1105
  • [8] Quantum-error correction and orthogonal geometry
    Calderbank, AR
    Rains, EM
    Shor, PW
    Sloane, NJA
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (03) : 405 - 408
  • [9] On binary constructions of quantum codes
    Cohen, G
    Encheva, S
    Litsyn, S
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (07) : 2495 - 2498
  • [10] A finite Gilbert-Varshamov bound for pure stabilizer quantum codes
    Feng, KQ
    Ma, Z
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (12) : 3323 - 3325