On Robust Trimming of Bayesian Network Classifiers

被引:0
|
作者
Choi, Yoo Jung [1 ]
Van den Broeck, Guy [1 ]
机构
[1] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90024 USA
关键词
INFORMATION; ALGORITHM;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper considers the problem of removing costly features from a Bayesian network classifier. We want the classifier to be robust to these changes, and maintain its classification behavior. To this end, we propose a closeness metric between Bayesian classifiers, called the expected classification agreement (ECA). Our corresponding trimming algorithm finds an optimal subset of features and a new classification threshold that maximize the expected agreement, subject to a budgetary constraint. It utilizes new theoretical insights to perform branch-and-bound search in the space of feature sets, while computing bounds on the ECA. Our experiments investigate both the runtime cost of trimming and its effect on the robustness and accuracy of the final classifier.
引用
收藏
页码:5002 / 5009
页数:8
相关论文
共 50 条
  • [1] Bayesian network classifiers
    Friedman, N
    Geiger, D
    Goldszmidt, M
    MACHINE LEARNING, 1997, 29 (2-3) : 131 - 163
  • [2] Bayesian Network Classifiers
    Nir Friedman
    Dan Geiger
    Moises Goldszmidt
    Machine Learning, 1997, 29 : 131 - 163
  • [3] Approximate Bayesian network classifiers
    Slezak, D
    Wróblewski, J
    ROUGH SETS AND CURRENT TRENDS IN COMPUTING, PROCEEDINGS, 2002, 2475 : 365 - 372
  • [4] Boosted Bayesian network classifiers
    Jing, Yushi
    Pavlovic, Vladimir
    Rehg, James M.
    MACHINE LEARNING, 2008, 73 (02) : 155 - 184
  • [5] Adaptive Bayesian network classifiers
    Castillo, Gladys
    Gama, Joao
    INTELLIGENT DATA ANALYSIS, 2009, 13 (01) : 39 - 59
  • [6] Comparing Bayesian network classifiers
    Cheng, J
    Greiner, R
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1999, : 101 - 108
  • [7] Boosted Bayesian network classifiers
    Yushi Jing
    Vladimir Pavlović
    James M. Rehg
    Machine Learning, 2008, 73 : 155 - 184
  • [8] Learning Bayesian classifiers from dependency network classifiers
    Gamez, Jose A.
    Mateo, Juan L.
    Puerta, Jose M.
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT 1, 2007, 4431 : 806 - +
  • [9] Wrapper positive Bayesian network classifiers
    Calvo, Borja
    Inza, Inaki
    Larranaga, Pedro
    Lozano, Jose A.
    KNOWLEDGE AND INFORMATION SYSTEMS, 2012, 33 (03) : 631 - 654
  • [10] Continuous time Bayesian network classifiers
    Stella, F.
    Amer, Y.
    JOURNAL OF BIOMEDICAL INFORMATICS, 2012, 45 (06) : 1108 - 1119