Moving Beyond Managing Realized Genomic Relationship in Long-Term Genomic Selection

被引:46
作者
De Beukelaer, Herman [1 ]
Badke, Yvonne [2 ]
Fack, Veerle [1 ]
De Meyer, Geert [2 ]
机构
[1] Univ Ghent, Dept Appl Math Comp Sci & Stat, Krijgslaan 281 S9, B-9000 Ghent, Belgium
[2] Bayer Crop Sci NV, Innovat Ctr, B-9052 Zwijnaarde, Belgium
关键词
genomic selection; long-term gain; diversity; optimization; set selection; GENETIC GAIN; OPTIMIZATION; PREDICTION; RELIABILITY; DIVERSITY; ALGORITHM; INFERENCE; GENOTYPES;
D O I
10.1534/genetics.116.194449
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Long-term genomic selection (GS) requires strategies that balance genetic gain with population diversity, to sustain progress for traits under selection, and to keep diversity for future breeding. In a simulation model for a recurrent selection scheme, we provide the first head-to-head comparison of two such existing strategies: genomic optimal contributions selection (GOCS), which limits realized genomic relationship among selection candidates, and weighted genomic selection (WGS), which upscales rare allele effects in GS. Compared to GS, both methods provide the same higher long-term genetic gain and a similar lower inbreeding rate, despite some inherent limitations. GOCS does not control the inbreeding rate component linked to trait selection, and, therefore, does not strike the optimal balance between genetic gain and inbreeding. This makes it less effective throughout the breeding scheme, and particularly so at the beginning, where genetic gain and diversity may not be competing. For WGS, truncation selection proved suboptimal to manage rare allele frequencies among the selection candidates. To overcome these limitations, we introduce two new set selection methods that maximize a weighted index balancing genetic gain with controlling expected heterozygosity (IND-HE) or maintaining rare alleles (IND-RA), and show that these outperform GOCS and WGS in a nearly identical way. While requiring further testing, we believe that the inherent benefits of the IND-HE and IND-RA methods will transfer from our simulation framework to many practical breeding settings, and are therefore a major step forward toward efficient long-term genomic selection.
引用
收藏
页码:1127 / 1138
页数:12
相关论文
共 41 条
[1]   Using semidefinite programming to optimize unequal deployment of genotypes to a clonal seed orchard [J].
Ahlinder, J. ;
Mullin, T. J. ;
Yamashita, M. .
TREE GENETICS & GENOMES, 2014, 10 (01) :27-34
[2]   Accuracy of Estimation of Genomic Breeding Values in Pigs Using Low-Density Genotypes and Imputation [J].
Badke, Yvonne M. ;
Bates, Ronald O. ;
Ernst, Catherine W. ;
Fix, Justin ;
Steibel, Juan P. .
G3-GENES GENOMES GENETICS, 2014, 4 (04) :623-631
[3]   The Hordeum Toolbox: The Barley Coordinated Agricultural Project Genotype and Phenotype Resource [J].
Blake, Victoria C. ;
Kling, Jennifer G. ;
Hayes, Patrick M. ;
Jannink, Jean-Luc ;
Jillella, Suman R. ;
Lee, John ;
Matthews, David E. ;
Chao, Shiaoman ;
Close, Timothy J. ;
Muehlbauer, Gary J. ;
Smith, Kevin P. ;
Wise, Roger P. ;
Dickerson, Julie A. .
PLANT GENOME, 2012, 5 (02) :81-91
[4]   A Unified Approach to Genotype Imputation and Haplotype-Phase Inference for Large Data Sets of Trios and Unrelated Individuals [J].
Browning, Brian L. ;
Browning, Sharon R. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2009, 84 (02) :210-223
[5]   Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering [J].
Browning, Sharon R. ;
Browning, Brian L. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2007, 81 (05) :1084-1097
[6]   Optimum contribution selection using differential evolution [J].
Carvalheiro, Roberto ;
de Queiroz, Sandra Aidar ;
Kinghorn, Brian .
REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2010, 39 (07) :1429-1436
[7]   The effect of genomic information on optimal contribution selection in livestock breeding programs [J].
Clark, Samuel A. ;
Kinghorn, Brian P. ;
Hickey, John M. ;
van der Werf, Julius H. J. .
GENETICS SELECTION EVOLUTION, 2013, 45
[8]   Development and implementation of high-throughput SNP genotyping in barley [J].
Close, Timothy J. ;
Bhat, Prasanna R. ;
Lonardi, Stefano ;
Wu, Yonghui ;
Rostoks, Nils ;
Ramsay, Luke ;
Druka, Arnis ;
Stein, Nils ;
Svensson, Jan T. ;
Wanamaker, Steve ;
Bozdag, Serdar ;
Roose, Mikeal L. ;
Moscou, Matthew J. ;
Chao, Shiaoman ;
Varshney, Rajeev K. ;
Szuecs, Peter ;
Sato, Kazuhiro ;
Hayes, Patrick M. ;
Matthews, David E. ;
Kleinhofs, Andris ;
Muehlbauer, Gary J. ;
DeYoung, Joseph ;
Marshall, David F. ;
Madishetty, Kavitha ;
Fenton, Raymond D. ;
Condamine, Pascal ;
Graner, Andreas ;
Waugh, Robbie .
BMC GENOMICS, 2009, 10
[9]   Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking [J].
Daetwyler, Hans D. ;
Calus, Mario P. L. ;
Pong-Wong, Ricardo ;
de los Campos, Gustavo ;
Hickey, John M. .
GENETICS, 2013, 193 (02) :347-+
[10]  
De Beukelaer H., 2016, SOFTWARE PRAC TICE E, DOI [10.1002/spe.2459.10.1002/spe.2459, DOI 10.1002/SPE.2459.10.1002/SPE.2459]