Thermodynamics of gases in nano cavities

被引:29
作者
Firat, C. [1 ]
Sisman, A. [1 ]
Ozturk, Z. F. [1 ]
机构
[1] Istanbul Tech Univ, Energy Inst, TR-34469 Istanbul, Turkey
关键词
Nano thermodynamics; Quantum size effects; Quantum potential; IDEAL-GASES; CONTAINER; SYSTEMS; ENGINES;
D O I
10.1016/j.energy.2009.08.020
中图分类号
O414.1 [热力学];
学科分类号
摘要
In nanoscale, gas density is not really homogenous even in thermodynamic equilibrium especially in a region near to the domain boundaries due to the wave character of gas particles. This inhomogeneous region is called quantum boundary layer (QBL) since its thickness goes to zero when the Planck's constant goes to zero. QBL can be neglected and density is assumed to be homogenous as long as thermal cle Broglie wavelength ( T) of particles is negligible in comparison with the domain sizes. in nanoscale, however, this condition breaks down and QBL changes the thermodynamic behaviour of gases considerably. In literature, density distribution of a Maxwellian gas has been examined for only a rectangular domain to obtain the analytical results. In this study, density distribution is examined for some regular and irregular domain geometries for which the analytical solution is not possible. It is shown that QBL covers the whole surface of the domain and both thickness and density profile of QBL are independent of the domain geometry. It is concluded that QBL has a universal thickness and density profile for a Maxwellian gas. Furthermore, an effective quantum potential is introduced to explain the inhomogeneous density distribution in thermodynamic equilibrium. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:814 / 819
页数:6
相关论文
共 17 条
[1]  
Ahmed S., 2005, J COMPUT ELECTRON, V4, P57
[2]   Modeling of MEMS-type Rankine cycle machines [J].
Cui, L ;
Brisson, JG .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2005, 127 (03) :683-692
[3]  
Dai WS, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016103
[4]   Hard-sphere gases as ideal gases with multi-core boundaries: An approach to two- and three-dimensional interacting gases [J].
Dai, WS ;
Xie, M .
EUROPHYSICS LETTERS, 2005, 72 (06) :887-893
[5]   Quantum statistics of ideal gases in confined space [J].
Dai, WS ;
Xie, M .
PHYSICS LETTERS A, 2003, 311 (4-5) :340-346
[6]   Millimeter-scale, micro-electro-mechanical systems gas turbine engines [J].
Epstein, AH .
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2004, 126 (02) :205-226
[7]   Can an ideal gas feel the shape of its container? [J].
Gutierrez, G ;
Yanez, JM .
AMERICAN JOURNAL OF PHYSICS, 1997, 65 (08) :739-743
[8]  
Jacobson S. A., 2003, P INT S MICR MECH EN, P513
[9]   CLASSICAL COULOMB FLUIDS IN A CONFINED GEOMETRY [J].
JANCOVICI, B ;
MANIFICAT, G .
JOURNAL OF STATISTICAL PHYSICS, 1992, 68 (5-6) :1089-1103
[10]   Heat transfer in miniature heat engines [J].
Kribus, A .
HEAT TRANSFER ENGINEERING, 2004, 25 (04) :1-3