A new complete color normalization method for H&E stained histopatholgical images

被引:27
|
作者
Vijh, Surbhi [1 ]
Saraswat, Mukesh [2 ]
Kumar, Sumit [1 ]
机构
[1] Amity Univ, ASET, Noida, Uttar Pradesh, India
[2] Jaypee Inst Informat Technol, Noida, India
关键词
Histopathological image; Computer aided diagnosis; Illuminant normalization; Fuzzy based stain normalization; Color normalization; Spectral normalization; Complete color normalization; DECONVOLUTION;
D O I
10.1007/s10489-021-02231-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The popularity of digital histopathology is growing rapidly in the development of computer aided disease diagnosis systems. However, the color variations due to manual cell sectioning and stain concentration make the process challenging in various digital pathological image analysis such as histopathological image segmentation and classification. Hence, the normalization of these variations are needed to obtain the promising results. The proposed research intends to introduce a reliable and robust new complete color normalization method, addressing the problems of color and stain variability. The new complete color normalization involves three phases, namely enhanced fuzzy illuminant normalization, fuzzy-based stain normalization, and modified spectral normalization. The extensive simulations are performed and validated on histopathological images. The presented algorithm outperforms the existing conventional normalization methods by overcoming the certain limitations and challenges. As per the experimental quality metrics and comparative analysis, the proposed algorithm performs efficiently and provides promising results.
引用
收藏
页码:7735 / 7748
页数:14
相关论文
共 20 条
  • [11] Automated Detection of DCIS in Whole-Slide H&E Stained Breast Histopathology Images
    Bejnordi, Babak Ehteshami
    Balkenhol, Maschenka
    Litjens, Geert
    Holland, Roland
    Bult, Peter
    Karssemeijer, Nico
    van der Laak, Jeroen A. W. M.
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) : 2141 - 2150
  • [12] Computational normalization of H&E-stained histological images: Progress, challenges and future potential
    Azevedo Tosta, Thaina A.
    de Faria, Paulo Rogerio
    Neves, Leandro Alves
    do Nascimento, Marcelo Zanchetta
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2019, 95 : 118 - 132
  • [13] A novel H&E color augmentation for domain invariance classification of unannotated histopathology prostate cancer images
    Bazargani, Roozbeh
    Chen, Wanwen
    Sadeghian, Sadaf
    Asadi, Maryam
    Boschman, Jeffrey
    Darbandsari, Amirali
    Bashashati, Ali
    Salcudean, Septimiu
    MEDICAL IMAGING 2023, 2023, 12471
  • [14] Noble Approach for Texture Classification of H&E Stained Histopathological Image by Gaussian Wavelet
    Saxena, Pranshu
    Singh, Sanjay Kumar
    2012 12TH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS (ISDA), 2012, : 375 - 379
  • [15] The utility of color normalization for AI-based diagnosis of hematoxylin and eosin-stained pathology images
    Boschman, Jeffrey
    Farahani, Hossein
    Darbandsari, Amirali
    Ahmadvand, Pouya
    Van Spankeren, Ashley
    Farnell, David
    Levine, Adrian B.
    Naso, Julia R.
    Churg, Andrew
    Jones, Steven J. M.
    Yip, Stephen
    Kobel, Martin
    Huntsman, David G.
    Gilks, C. Blake
    Bashashati, Ali
    JOURNAL OF PATHOLOGY, 2022, 256 (01): : 15 - 24
  • [16] A Complete Color Normalization Approach to Histopathology Images Using Color Cues Computed From Saturation-Weighted Statistics
    Li, Xingyu
    Plataniotis, Konstantinos N.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (07) : 1862 - 1873
  • [17] Optimized Whole-Slide-Image H&E Stain Normalization: A Step Towards Big Data Integration in Digital Pathology
    Agraz, Jose L.
    Agraz, Carlos
    Chen, Andrew A.
    Rice, Charles
    Pozos, Robert S.
    Aelterman, Sven
    Tan, Amanda
    Viaene, Angela N.
    Nasrallah, MacLean P.
    Sharma, Parth
    Grenko, Caleb M.
    Kurc, Tahsin
    Saltz, Joel
    Feldman, Michael D.
    Akbari, Hamed
    Shinohara, Russell T.
    Bakas, Spyridon
    Wilson, Parker
    IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2025, 6 : 35 - 40
  • [18] Comparison of deep learning models for digital H&E staining from unpaired label-free multispectral microscopy images
    Salido, Jesus
    Vallez, Noelia
    Gonzalez-Lopez, Lucia
    Deniz, Oscar
    Bueno, Gloria
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 235
  • [19] Automated diagnosis of 7 canine skin tumors using machine learning on H&E-stained whole slide images
    Fragoso-Garcia, Marco
    Wilm, Frauke
    Bertram, Christof A.
    Merz, Sophie
    Schmidt, Anja
    Donovan, Taryn
    Fuchs-Baumgartinger, Andrea
    Bartel, Alexander
    Marzahl, Christian
    Diehl, Laura
    Puget, Chloe
    Maier, Andreas
    Aubreville, Marc
    Breininger, Katharina
    Klopfleisch, Robert
    VETERINARY PATHOLOGY, 2023, 60 (06) : 865 - 875
  • [20] Design and evaluation of a new automated method for the segmentation and characterization of masses on ultrasound images - art. no. 69150H
    Cui, Jing
    Sahiner, Berkman
    Chan, Heang-Ping
    Nees, Alexis
    Paramagul, Chintana
    Hadjiiski, Lubomir M.
    Zhou, Chuan
    Shi, Jiazheng
    MEDICAL IMAGING 2008: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2008, 6915 : H9150 - H9150