Some invariants of pretzel links

被引:23
作者
Kim, Dongseok [1 ]
Lee, Jaeun [1 ]
机构
[1] Yeungnam Univ, Dept Math, Kyongsan 712749, South Korea
关键词
D O I
10.1017/S0004972700039198
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that nontrivial. classical pretzel knots L(p, q, r) are hyperbolic with eight exceptions which are torus knots. We find Conway polynomials of n-pretzel links using a new computation tree. As applications, we compute the genera of n-pretzel links using these polynomials and find the basket number of pretzel links by showing that the genus and the canonical genus of a pretzel link are the same.
引用
收藏
页码:253 / 271
页数:19
相关论文
共 35 条
[1]  
Adams C.C., 1994, The Knot Book
[2]   ALMOST ALTERNATING LINKS [J].
ADAMS, CC ;
BROCK, JF ;
BUGBEE, J ;
COMAR, TD ;
FAIGIN, KA ;
HUSTON, AM ;
JOSEPH, AM ;
PESIKOFF, D .
TOPOLOGY AND ITS APPLICATIONS, 1992, 46 (02) :151-165
[3]  
BAE Y, ARXIVGT0607079
[4]   DOUBLE BRANCHED COVERS AND PRETZEL KNOTS [J].
BEDIENT, RE .
PACIFIC JOURNAL OF MATHEMATICS, 1984, 112 (02) :265-272
[5]   Free genus one knots with large volume [J].
Brittenham, M .
PACIFIC JOURNAL OF MATHEMATICS, 2001, 201 (01) :61-82
[6]   A geometric construction of the Conway potential function [J].
Cimasoni, D .
COMMENTARII MATHEMATICI HELVETICI, 2004, 79 (01) :124-146
[7]  
Conway J., 1970, Computational Problems in Abstract Algebra, P329
[8]   GENUS OF ALTERNATING LINK TYPES [J].
CROWELL, RH .
ANNALS OF MATHEMATICS, 1959, 69 (02) :258-275
[9]   BRAIDS AND THE JONES POLYNOMIAL [J].
FRANKS, J ;
WILLIAMS, RF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (01) :97-108
[10]  
GABAI D, 1986, MEM AM MATH SOC, V59, P1