Plastic Waste Product Captures Carbon Dioxide in Nanometer Pores

被引:50
作者
Algozeeb, Wala A. [1 ]
Savas, Paul E. [1 ]
Yuan, Zhe [1 ]
Wang, Zhe [1 ]
Kittrell, Carter [1 ]
Hall, Jacklyn N. [2 ]
Chen, Weiyin [1 ]
Bollini, Praveen [2 ]
Tour, James M. [1 ,3 ,4 ,5 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Univ Houston, Dept Chem & Biomol Engn, Houston, TX 77004 USA
[3] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[4] Rice Univ, Smalley Curl Inst, NanoCarbon Ctr, Houston, TX 77005 USA
[5] Rice Univ, Welch Inst Adv Mat, Houston, TX 77005 USA
关键词
plastic waste; carbon dioxide; flue gas; CO2; sorbent; capture; HIGH-SURFACE-AREA; POROUS CARBON; CO2; CAPTURE; THERMAL-DECOMPOSITION; ACTIVATED CARBON; ADSORPTION; EFFICIENT; CAPACITY;
D O I
10.1021/acsnano.2c00955
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plastic waste (PW) and increasing atmospheric carbon dioxide (CO2) levels are among the top environmental concerns presently facing humankind. With an ambitious 2050 zero-CO2 emissions goal, there is a demand for economical CO2 capture routes. Here we show that the thermal treatment of PW in the presence of potassium acetate yields an effective carbon sorbent with pores width of 0.7-1.4 nm for CO2 capture. The PW to carbon sorbent process works with single or mixed streams of polyolefin plastics. The CO2 capacity of the sorbent at 25 degrees C is 17.0 +/- 1.1 wt % (3.80 +/- 0.25 mmol g(-1)) at 1 bar and 5.0 +/- 0.6 wt % (1.13 +/- 0.13 mmol g(-1)) at 0.15 bar, and it regenerates upon reaching 75 +/- 5 degrees C. The CO2 capture cost from flue gas via this technology is estimated to be <$21 ton(-1) CO2, much lower than competing CO2 capture technologies. Hence, this PW-derived carbon material should find utility in the capture of CO2 from point sources of high CO2 emissions while providing a use for otherwise deleterious PW.
引用
收藏
页码:7284 / 7290
页数:7
相关论文
共 43 条
[1]   Recycling and recovery routes of plastic solid waste (PSW): A review [J].
Al-Salem, S. M. ;
Lettieri, P. ;
Baeyens, J. .
WASTE MANAGEMENT, 2009, 29 (10) :2625-2643
[2]  
[Anonymous], 2021, TIRE PYROLYSIS PLANT
[3]   Preparation and carbon dioxide uptake capacity of N-doped porous carbon materials derived from direct carbonization of zeolitic imidazolate framework [J].
Bai, Fenghua ;
Xia, Yongde ;
Chen, Binling ;
Su, Haiquan ;
Zhu, Yanqiu .
CARBON, 2014, 79 :213-226
[4]  
Baudot A., 2015, ENCY MEMBRANES, P1
[5]   Polyacrylonitrile Nanoparticle-Derived Hierarchical Structure for CO2 Capture [J].
Beltzung, Anna ;
Klaue, Antoine ;
Colombo, Claudio ;
Wu, Hua ;
Storti, Giuseppe ;
Morbidelli, Massimo .
ENERGY TECHNOLOGY, 2018, 6 (04) :718-727
[6]   Room-Temperature Ionic Liquid-Amine Solutions: Tunable Solvents for Efficient and Reversible Capture Of CO2 [J].
Camper, Dean ;
Bara, Jason E. ;
Gin, Douglas L. ;
Noble, Richard D. .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2008, 47 (21) :8496-8498
[7]   Insight into the thermal decomposition of kaolinite intercalated with potassium acetate: an evolved gas analysis [J].
Cheng, Hongfei ;
Li, Kuo ;
Liu, Qinfu ;
Zhang, Shuai ;
Li, Xiaoguang ;
Frost, Ray L. .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (03) :1231-1239
[8]   Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene [J].
Ciliz, NK ;
Ekinci, E ;
Snape, CE .
WASTE MANAGEMENT, 2004, 24 (02) :173-181
[9]   Biomass-derived activated carbon with simultaneously enhanced CO2 uptake for both pre and post combustion capture applications [J].
Coromina, Helena Matabosch ;
Walsh, Darren A. ;
Mokaya, Robert .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (01) :280-289
[10]   Human Consumption of Microplastics [J].
Cox, Kieran D. ;
Covernton, Garth A. ;
Davies, Hailey L. ;
Dower, John F. ;
Juanes, Francis ;
Dudas, Sarah E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (12) :7068-7074