Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing

被引:55
作者
Kim, Jin-Oh [1 ]
Koo, Won-Tae [1 ,2 ]
Kim, Hanul [3 ]
Park, Chungseong [1 ,2 ]
Lee, Taehoon [1 ]
Hutomo, Calvin Andreas [1 ]
Choi, Siyoung Q. [3 ]
Kim, Dong Soo [4 ]
Kim, Il-Doo [1 ,2 ]
Park, Steve [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, Daejeon, South Korea
[2] KAIST Inst Nanocentury, Membrane Innovat Ctr Antivirus Air Qual Control, Daejeon, South Korea
[3] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon, South Korea
[4] Hanbat Natl Univ, Dept Creat Convergence Engn, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
METAL-ORGANIC FRAMEWORK; PLATINUM NANOPARTICLES; SENSING PERFORMANCE; ROOM-TEMPERATURE; CRYSTALS; QUALITY; SENSORS;
D O I
10.1038/s41467-021-24571-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conductive metal-organic framework (C-MOF) thin-films have a wide variety of potential applications in the field of electronics, sensors, and energy devices. The immobilization of various functional species within the pores of C-MOFs can further improve the performance and extend the potential applications of C-MOFs thin films. However, developing facile and scalable synthesis of high quality ultra-thin C-MOFs while simultaneously immobilizing functional species within the MOF pores remains challenging. Here, we develop microfluidic channel-embedded solution-shearing (MiCS) for ultra-fast (<= 5mm/s) and large-area synthesis of high quality nanocatalyst-embedded C-MOF thin films with thickness controllability down to tens of nanometers. The MiCS method synthesizes nanoscopic catalyst-embedded C-MOF particles within the microfluidic channels, and simultaneously grows catalyst-embedded C-MOF thin-film uniformly over a large area using solution shearing. The thin film displays high nitrogen dioxide (NO2) sensing properties at room temperature in air amongst two-dimensional materials, owing to the high surface area and porosity of the ultra-thin C-MOFs, and the catalytic activity of the nanoscopic catalysts embedded in the C-MOFs. Therefore, our method, i.e. MiCS, can provide an efficient way to fabricate highly active and conductive porous materials for various applications. The immobilization of catalysts within the pores of conductive metal-organic frameworks (C-MOFs) via facile and scalable methodologies remains challenging. Here the authors report a microfluidic channel-embedded solution shearing process that enables the high throughput, large-area, single-step preparation of Pt nanocatalyst-embedded C-MOF thin films.
引用
收藏
页数:8
相关论文
共 52 条
  • [31] Electronic noses for food quality: A review
    Loutfi, Amy
    Coradeschi, Silvia
    Mani, Ganesh Kumar
    Shankar, Prabakaran
    Rayappan, John Bosco Balaguru
    [J]. JOURNAL OF FOOD ENGINEERING, 2015, 144 : 103 - 111
  • [32] Metals@MOFs - Loading MOFs with Metal Nanoparticles for Hybrid Functions
    Meilikhov, Mikhail
    Yusenko, Kiri
    Esken, Daniel
    Turner, Stuart
    Van Tendeloo, Gustaaf
    Fischer, Roland A.
    [J]. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2010, (24) : 3701 - 3714
  • [33] Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries
    Nam, Kwan Woo
    Park, Sarah S.
    dos Reis, Roberto
    Dravid, Vinayak P.
    Kim, Heejin
    Mirkin, Chad A.
    Stoddart, J. Fraser
    [J]. NATURE COMMUNICATIONS, 2019, 10 (1)
  • [34] Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet
    Potyrailo, Radislav A.
    [J]. CHEMICAL REVIEWS, 2016, 116 (19) : 11877 - 11923
  • [35] Bottom-Up Fabrication of Semiconductive Metal-Organic Framework Ultrathin Films
    Rubio-Gimenez, Victor
    Galbiati, Marta
    Castells-Gil, Javier
    Almora-Barrios, Neyvis
    Navarro-Sanchez, Jose
    Escorcia-Ariza, Garin
    Mattera, Michele
    Arnold, Thomas
    Rawle, Jonathan
    Tatay, Sergio
    Coronado, Eugenio
    Marti-Gastaldo, Carlos
    [J]. ADVANCED MATERIALS, 2018, 30 (10)
  • [36] Dual-Function Metal-Organic Framework-Based Wearable Fibers for Gas Probing and Energy Storage
    Rui, Kun
    Wang, Xiaoshan
    Du, Min
    Zhang, Yao
    Wang, Qingqing
    Ma, Zhongyuan
    Zhang, Qiao
    Li, Desheng
    Huang, Xiao
    Sun, Gengzhi
    Zhu, Jixin
    Huang, Wei
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (03) : 2837 - 2842
  • [37] Sheberla D, 2017, NAT MATER, V16, P220, DOI [10.1038/NMAT4766, 10.1038/nmat4766]
  • [38] Self-Organized Frameworks on Textiles (SOFT): Conductive Fabrics for Simultaneous Sensing, Capture, and Filtration of Gases
    Smith, Merry K.
    Mirica, Katherine A.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (46) : 16759 - 16767
  • [39] 2D Semiconducting Metal-Organic Framework Thin Films for Organic Spin Valves
    Song, Xiaoyu
    Wang, Xinyue
    Li, Yusen
    Zheng, Chengzhi
    Zhang, Bowen
    Di, Chong-an
    Li, Feng
    Jin, Chao
    Mi, Wenbo
    Chen, Long
    Hu, Wenping
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (03) : 1118 - 1123
  • [40] Electrically Conductive Porous Metal-Organic Frameworks
    Sun, Lei
    Campbell, Michael G.
    Dinca, Mircea
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (11) : 3566 - 3579