Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing

被引:55
作者
Kim, Jin-Oh [1 ]
Koo, Won-Tae [1 ,2 ]
Kim, Hanul [3 ]
Park, Chungseong [1 ,2 ]
Lee, Taehoon [1 ]
Hutomo, Calvin Andreas [1 ]
Choi, Siyoung Q. [3 ]
Kim, Dong Soo [4 ]
Kim, Il-Doo [1 ,2 ]
Park, Steve [1 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, Daejeon, South Korea
[2] KAIST Inst Nanocentury, Membrane Innovat Ctr Antivirus Air Qual Control, Daejeon, South Korea
[3] Korea Adv Inst Sci & Technol KAIST, Dept Chem & Biomol Engn, Daejeon, South Korea
[4] Hanbat Natl Univ, Dept Creat Convergence Engn, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
METAL-ORGANIC FRAMEWORK; PLATINUM NANOPARTICLES; SENSING PERFORMANCE; ROOM-TEMPERATURE; CRYSTALS; QUALITY; SENSORS;
D O I
10.1038/s41467-021-24571-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Conductive metal-organic framework (C-MOF) thin-films have a wide variety of potential applications in the field of electronics, sensors, and energy devices. The immobilization of various functional species within the pores of C-MOFs can further improve the performance and extend the potential applications of C-MOFs thin films. However, developing facile and scalable synthesis of high quality ultra-thin C-MOFs while simultaneously immobilizing functional species within the MOF pores remains challenging. Here, we develop microfluidic channel-embedded solution-shearing (MiCS) for ultra-fast (<= 5mm/s) and large-area synthesis of high quality nanocatalyst-embedded C-MOF thin films with thickness controllability down to tens of nanometers. The MiCS method synthesizes nanoscopic catalyst-embedded C-MOF particles within the microfluidic channels, and simultaneously grows catalyst-embedded C-MOF thin-film uniformly over a large area using solution shearing. The thin film displays high nitrogen dioxide (NO2) sensing properties at room temperature in air amongst two-dimensional materials, owing to the high surface area and porosity of the ultra-thin C-MOFs, and the catalytic activity of the nanoscopic catalysts embedded in the C-MOFs. Therefore, our method, i.e. MiCS, can provide an efficient way to fabricate highly active and conductive porous materials for various applications. The immobilization of catalysts within the pores of conductive metal-organic frameworks (C-MOFs) via facile and scalable methodologies remains challenging. Here the authors report a microfluidic channel-embedded solution shearing process that enables the high throughput, large-area, single-step preparation of Pt nanocatalyst-embedded C-MOF thin films.
引用
收藏
页数:8
相关论文
共 52 条
  • [1] Almora-Barrios N., 2018, ANGEW CHEM, V130, P15306, DOI [DOI 10.1002/ANGE.201808242, 10.1002/ange.201808242]
  • [2] Direct Imaging of Isolated Single-Molecule Magnets in Metal Organic Frameworks
    Aulakh, Darpandeep
    Liu, Lingmei
    Varghese, Juby R.
    Xie, Haomiao
    Islamoglu, Timur
    Duell, Kyle
    Kung, Chung-Wei
    Hsiung, Chia-En
    Zhang, Yuxin
    Drout, Riki J.
    Farha, Omar K.
    Dunbar, Kim R.
    Han, Yu
    Wriedt, Mario
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (07) : 2997 - 3005
  • [3] A Highly Conductive MOF of Graphene Analogue Ni3(HITP)2 as a Sulfur Host for High-Performance Lithium-Sulfur Batteries
    Cai, Dong
    Lu, Mengjie
    Li, La
    Cao, Junming
    Chen, Duo
    Tu, Haoran
    Li, Junzhi
    Han, Wei
    [J]. SMALL, 2019, 15 (44)
  • [4] Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks
    Campbell, Michael G.
    Liu, Sophie F.
    Swager, Timothy M.
    Dinca, Mircea
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (43) : 13780 - 13783
  • [5] Cu3(hexaiminotriphenylene)2: An Electrically Conductive 2D Metal-Organic Framework for Chemiresistive Sensing
    Campbell, Michael G.
    Sheberla, Dennis
    Liu, Sophie F.
    Swager, Timothy M.
    Dinca, Mircea
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (14) : 4349 - 4352
  • [6] Mimicking a Dog's Nose: Scrolling Graphene Nanosheets
    Chen, Zhuo
    Wang, Jinrong
    Pan, Douxing
    Wang, Yao
    Noetzel, Richard
    Li, Hao
    Xie, Peng
    Pei, Wenle
    Umar, Ahmad
    Jiang, Lei
    Li, Nan
    de Rooij, Nicolaas Frans
    Zhou, Guofu
    [J]. ACS NANO, 2018, 12 (03) : 2521 - 2530
  • [7] Charge-transfer-based Gas Sensing Using Atomic-layer MoS2
    Cho, Byungjin
    Hahm, Myung Gwan
    Choi, Minseok
    Yoon, Jongwon
    Kim, Ah Ra
    Lee, Young-Joo
    Park, Sung-Gyu
    Kwon, Jung-Dae
    Kim, Chang Su
    Song, Myungkwan
    Jeong, Yongsoo
    Nam, Kee-Seok
    Lee, Sangchul
    Yoo, Tae Jin
    Kang, Chang Goo
    Lee, Byoung Hun
    Ko, Heung Cho
    Ajayan, Pulickel M.
    Kim, Dong-Ho
    [J]. SCIENTIFIC REPORTS, 2015, 5 : 8052
  • [8] Chemical Environment Control and Enhanced Catalytic Performance of Platinum Nanoparticles Embedded in Nanocrystalline Metal-Organic Frameworks
    Choi, Kyung Min
    Na, Kyungsu
    Somorjai, Gabor A.
    Yaghi, Omar M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (24) : 7810 - 7816
  • [9] Metal-Organic Framework-Templated PdO-Co3O4 Nanocubes Functionalized by SWCNTs: Improved NO2 Reaction Kinetics on Flexible Heating Film
    Choi, Seon-Jin
    Choi, Hak-Jong
    Koo, Won-Tae
    Huh, Daihong
    Lee, Heon
    Kim, Il-Doo
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (46) : 40593 - 40603
  • [10] New strategies based on microfluidics for the synthesis of metal-organic frameworks and their membranes
    Echaide-Gorriz, Carlos
    Clement, Coralie
    Cacho-Bailo, Fernando
    Tellez, Carlos
    Coronas, Joaquin
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (14) : 5485 - 5506