Attribute selection using correlations and principal components for artificial neural networks employment for landslide susceptibility assessment

被引:21
作者
Lucchese, Luisa Vieira [1 ]
de Oliveira, Guilherme Garcia [2 ]
Pedrollo, Olavo Correa [1 ]
机构
[1] Univ Fed Rio Grande do Sul, Inst Pesquisas Hidraul, Ave Bento Goncalves 9500, Porto Alegre, RS, Brazil
[2] Univ Fed Rio Grande do Sul, Dept Interdisciplinar, Rodovia RS 030,11700,Km 92 Emboaba, BR-95590000 Tramandai, RS, Brazil
关键词
Landslide; Multilayer perceptron; Dimensionality reduction; Susceptibility map; LOGISTIC-REGRESSION; HAZARD EVALUATION; RIVER-BASIN; MODELS; EARTHQUAKE; PREDICTION; STABILITY; ZONATION; WEIGHTS; SLOPES;
D O I
10.1007/s10661-019-7968-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Landslide susceptibility maps can be developed with artificial neural networks (ANNs). In order to train our ANNs, a digital elevation model (DEM) and a scar map of one previous event were used. Eleven attributes are generated, possibly containing redundant information. Our base model is formed by, essentially, one input (the DEM), eleven attributes, 30 neurons, and one output (susceptibility). Principal components (PCs) group information in the first projected variables, the last ones can be expendable. In the present paper, four groups of models were trained: one with eleven attributes generated from the DEM; one with 8 out of 11 attributes, in which 3 were eliminated by their high correlation with others; other, with the data projected over its PCs; and another, using 8 out of 11 PCs. The used number of neurons in hidden layer is 30, calibrated based on a complexity analysis that is an in-house developed method. The ANN models trained with the original data generated better statistical results than their counterparts trained with the PC transformed input. Keeping the original 11 attributes calculated provided the best metrics among all models, showing that eliminating attributes also eliminates information used by the model. Using 11 PC transformed attributes hindered trained. However, for the model with eight PCs, training was much faster than its counterpart with little accuracy loss. The metrics and maps achieved were considered acceptable, conveying the power of our model based on ANNs, which uses essentially one input (the DEM) for mapping areas susceptible to mass movements.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Landslide Susceptibility Analysis and Verification using Artificial Neural Network in the Kangneung Area
    Lee, Saro
    Lee, Moung-Jin
    Won, Joong-Sun
    ECONOMIC AND ENVIRONMENTAL GEOLOGY, 2005, 38 (01): : 33 - 43
  • [42] Landslide susceptibility assessment using the certainty factor and deep neural network
    Ma, Wenli
    Dong, Jianhui
    Wei, Zhanxi
    Peng, Liang
    Wu, Qihong
    Wang, Xiao
    Dong, Yangdan
    Wu, Yuanzao
    FRONTIERS IN EARTH SCIENCE, 2023, 10
  • [43] Seismic landslide susceptibility assessment using principal component analysis and support vector machine
    Xu, Ziyao
    Che, Ailan
    Zhou, Hanxu
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [44] Landslide susceptibility mapping with r.landslide: A free open-source GIS-integrated tool based on Artificial Neural Networks
    Bragagnolo, L.
    da Silva, R. V.
    Grzybowski, J. M. V.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2020, 123
  • [45] Exploring Correlations Between Properties Using Artificial Neural Networks
    Zhang, Yiming
    Evans, Julian R. G.
    Yang, Shoufeng
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (01): : 58 - 75
  • [46] Shallow Landslide Susceptibility Modeling Using the Data Mining Models Artificial Neural Network and Boosted Tree
    Oh, Hyun-Joo
    Lee, Saro
    APPLIED SCIENCES-BASEL, 2017, 7 (10):
  • [47] Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models
    Lee, Saro
    Oh, Hyun-Joo
    KOREAN JOURNAL OF REMOTE SENSING, 2019, 35 (02) : 299 - 316
  • [48] Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fao River Basin, Southern Brazil
    de Oliveira, Guilherme Garcia
    Chimelo Ruiz, Luis Fernando
    Guasselli, Laurindo Antonio
    Haetinger, Claus
    NATURAL HAZARDS, 2019, 99 (02) : 1049 - 1073
  • [49] Spatial landslide susceptibility assessment using machine learning techniques assisted by additional data created with generative adversarial networks
    Al-Najjar, Husam A. H.
    Pradhan, Biswajeet
    GEOSCIENCE FRONTIERS, 2021, 12 (02) : 625 - 637
  • [50] A Comparative Study of the Frequency Ratio, Analytical Hierarchy Process, Artificial Neural Networks and Fuzzy Logic Methods for Landslide Susceptibility Mapping: Taskent (Konya), Turkey
    Ozdemir, Adnan
    GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2020, 38 (04) : 4129 - 4157