Linear passive systems and maximal monotone mappings

被引:35
作者
Camlibel, M. K. [1 ,2 ]
Schumacher, J. M. [3 ]
机构
[1] Univ Groningen, Dept Math, POB 800, NL-9700 AV Groningen, Netherlands
[2] Dogus Univ, Dept Elect & Commun Engn, TR-34722 Istanbul, Turkey
[3] Tilburg Univ, Dept Econometr & Operat Res, POB 90153, NL-5000 LE Tilburg, Netherlands
关键词
ABSOLUTE STABILITY; DYNAMICAL-SYSTEMS; UNIQUENESS;
D O I
10.1007/s10107-015-0945-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper deals with a class of dynamical systems obtained from interconnecting linear systems with static set-valued relations. We first show that such an interconnection can be described by a differential inclusions with a maximal monotone set-valued mappings when the underlying linear system is passive and the static relation is maximal monotone. Based on the classical results on such differential inclusions, we conclude that such interconnections are well-posed in the sense of existence and uniqueness of solutions. Finally, we investigate conditions which guarantee well-posedness but are weaker than passivity.
引用
收藏
页码:397 / 420
页数:24
相关论文
共 42 条
[1]   A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems: applications in electronics [J].
Addi, Khalid ;
Brogliato, B. ;
Goeleven, D. .
MATHEMATICAL PROGRAMMING, 2011, 126 (01) :31-67
[2]   A stability theory for second-order nonsmooth dynamical systems with application to friction problems [J].
Adly, S ;
Goeleven, D .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :17-51
[3]  
Adly S, 2013, J CONVEX ANAL, V20, P43
[4]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[5]  
[Anonymous], 2001, COMM CONT E
[6]   Numerical precision for differential inclusions with uniqueness [J].
Bastien, J ;
Schatzman, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2002, 36 (03) :427-460
[7]   Convergence order of implicit Euler numerical scheme for maximal monotone differential inclusions [J].
Bastien, Jerome .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04) :955-966
[8]   The Krakovskii-LaSalle invariance principle for a class of unilateral dynamical systems [J].
Brogliato, B ;
Goeleven, D .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (01) :57-76
[9]   Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings [J].
Brogliato, B .
SYSTEMS & CONTROL LETTERS, 2004, 51 (05) :343-353
[10]  
Brogliato B, 2013, J CONVEX ANAL, V20, P881