Nonparametric volatility density estimation for discrete time models

被引:10
作者
Van Es, B
Spreij, P
Van Zanten, H
机构
[1] Free Univ Amsterdam, Div Math & Comp Sci, NL-1081 HV Amsterdam, Netherlands
[2] Univ Amsterdam, Korteweg Vries Inst Math, NL-1018 TV Amsterdam, Netherlands
关键词
Stochastic volatility models; density estimation; kernel estimator; deconvolution mixing;
D O I
10.1080/1048525042000267752
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider discrete time models for asset prices with a stationary volatility process. We aim at estimating the multivariate density of this process at a set of consecutive time instants. A Fourier-type deconvolution kernel density estimator based on the logarithm of the squared process is proposed to estimate the volatility density. Expansions of the bias and bounds on the variance are derived.
引用
收藏
页码:237 / 251
页数:15
相关论文
共 24 条
[1]  
8Doukhan P., 2012, Mixing: Properties and Examples, V85
[2]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[3]  
[Anonymous], DEPENDENCE PROBABILI
[4]   GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSKEDASTICITY [J].
BOLLERSLEV, T .
JOURNAL OF ECONOMETRICS, 1986, 31 (03) :307-327
[5]   STATIONARITY OF GARCH PROCESSES AND OF SOME NONNEGATIVE TIME-SERIES [J].
BOUGEROL, P ;
PICARD, N .
JOURNAL OF ECONOMETRICS, 1992, 52 (1-2) :115-127
[6]   STRICT STATIONARITY OF GENERALIZED AUTOREGRESSIVE PROCESSES [J].
BOUGEROL, P ;
PICARD, N .
ANNALS OF PROBABILITY, 1992, 20 (04) :1714-1730
[7]  
BOUSSAMA F, 1998, THESIS U PARIS 7
[8]   Mixing and moment properties of various GARCH and stochastic volatility models [J].
Carrasco, M ;
Chen, XH .
ECONOMETRIC THEORY, 2002, 18 (01) :17-39
[9]   OPTIMAL RATES OF CONVERGENCE FOR DECONVOLVING A DENSITY [J].
CARROLL, RJ ;
HALL, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1988, 83 (404) :1184-1186
[10]   NOTE ON EMPIRICAL PROCESSES OF STRONG-MIXING SEQUENCES [J].
DEO, CM .
ANNALS OF PROBABILITY, 1973, 1 (05) :870-875