Cliques in Dense Inhomogeneous Random Graphs

被引:12
|
作者
Dolezal, Martin [1 ]
Hladky, Jan [1 ,3 ]
Mathe, Andras [2 ]
机构
[1] Czech Acad Sci, Inst Math, Zitna 25, Prague 11000, Czech Republic
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, W Midlands, England
[3] Czech Acad Sci, Inst Comp Sci, Vodarenskou Vezi 2, Prague 18207, Czech Republic
关键词
random graphs; graph limits; clique number; PHASE-TRANSITION;
D O I
10.1002/rsa.20715
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The theory of dense graph limits comes with a natural sampling process which yields an inhomogeneous variant G(n, W) of the Erdos-Renyi random graph. Here we study the clique number of these random graphs. We establish the concentration of the clique number of G(n, W) for each fixed n, and give examples of graphons for whichG(n, W) exhibits wild long-term behavior. Our main result is an asymptotic formula which gives the almost sure clique number of these random graphs. We obtain a similar result for the bipartite version of the problem. We also make an observation that might be of independent interest: Every graphon avoiding a fixed graph is countably-partite. (C) 2017 The Authors Random Structures & Algorithms Published by Wiley Periodicals, Inc.
引用
收藏
页码:275 / 314
页数:40
相关论文
共 50 条
  • [1] SUPERLOGARITHMIC CLIQUES IN DENSE INHOMOGENEOUS RANDOM GRAPHS
    McKinley, Gweneth
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2019, 33 (03) : 1772 - 1800
  • [2] Cliques in geometric inhomogeneous random graphs
    Michielan, Riccardo
    Stegehuis, Clara
    JOURNAL OF COMPLEX NETWORKS, 2022, 10 (01)
  • [3] A limit theorem for small cliques in inhomogeneous random graphs
    Hladky, Jan
    Pelekis, Christos
    Sileikis, Matas
    JOURNAL OF GRAPH THEORY, 2021, 97 (04) : 578 - 599
  • [4] CLIQUES IN HIGH-DIMENSIONAL GEOMETRIC INHOMOGENEOUS RANDOM GRAPHS
    Friedrich, Tobias
    Goebel, Andreas
    Katzmann, Maximilian
    Schiller, Leon
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2024, 38 (02) : 1943 - 2000
  • [5] Counting Cliques and Cycles in Scale-Free Inhomogeneous Random Graphs
    A. J. E. M. Janssen
    Johan S. H. van Leeuwaarden
    Seva Shneer
    Journal of Statistical Physics, 2019, 175 : 161 - 184
  • [6] Counting Cliques and Cycles in Scale-Free Inhomogeneous Random Graphs
    Janssen, A. J. E. M.
    van Leeuwaarden, Johan S. H.
    Shneer, Seva
    JOURNAL OF STATISTICAL PHYSICS, 2019, 175 (01) : 161 - 184
  • [7] A Spectral Algorithm for Finding Maximum Cliques in Dense Random Intersection Graphs
    Christodoulou, Filippos
    Nikoletseas, Sotiris
    Raptopoulos, Christoforos
    Spirakis, Paul G.
    SOFSEM 2023: THEORY AND PRACTICE OF COMPUTER SCIENCE, 2023, 13878 : 18 - 32
  • [8] Cliques in Hyperbolic Random Graphs
    Thomas Bläsius
    Tobias Friedrich
    Anton Krohmer
    Algorithmica, 2018, 80 : 2324 - 2344
  • [9] THE MAXIMUM NUMBER OF CLIQUES IN DENSE GRAPHS
    HEDMAN, B
    DISCRETE MATHEMATICS, 1985, 54 (02) : 161 - 166
  • [10] TOPOLOGICAL CLIQUES OF RANDOM GRAPHS
    BOLLOBAS, B
    CATLIN, PA
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1981, 30 (02) : 224 - 227