Invertibility Conditions for Floating-Point Formulas

被引:4
作者
Brain, Martin [3 ,4 ]
Niemetz, Aina [1 ]
Preiner, Mathias [1 ]
Reynolds, Andrew [2 ]
Barrett, Clark [1 ]
Tinelli, Cesare [2 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Univ Iowa, Iowa City, IA USA
[3] Univ Oxford, Oxford, England
[4] City Univ London, London, England
来源
COMPUTER AIDED VERIFICATION, CAV 2019, PT II | 2019年 / 11562卷
基金
美国国家科学基金会;
关键词
D O I
10.1007/978-3-030-25543-5_8
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Automated reasoning procedures are essential for a number of applications that involve bit-exact floating-point computations. This paper presents conditions that characterize when a variable in a floating-point constraint has a solution, which we call invertibility conditions. We describe a novel workflow that combines human interaction and a syntax-guided synthesis (SyGuS) solver that was used for discovering these conditions. We verify our conditions for several floating-point formats. One implication of this result is that a fragment of floating-point arithmetic admits compact quantifier elimination. We implement our invertibility conditions in a prototype extension of our solver CVC4, showing their usefulness for solving quantified constraints over floating-points.
引用
收藏
页码:116 / 136
页数:21
相关论文
共 33 条
[1]   Scaling Enumerative Program Synthesis via Divide and Conquer [J].
Alur, Rajeev ;
Radhakrishna, Arjun ;
Udupa, Abhishek .
TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, TACAS 2017, PT I, 2017, 10205 :319-336
[2]   Syntax-Guided Synthesis [J].
Alur, Rajeev ;
Bodik, Rastislav ;
Dallal, Eric ;
Fisman, Dana ;
Garg, Pranav ;
Juniwal, Garvit ;
Kress-Gazit, Hadas ;
Madhusudan, P. ;
Martin, Milo M. K. ;
Raghothaman, Mukund ;
Saha, Shamwaditya ;
Seshia, Sanjit A. ;
Singh, Rishabh ;
Solar-Lezama, Armando ;
Torlak, Emina ;
Udupa, Abhishek .
DEPENDABLE SOFTWARE SYSTEMS ENGINEERING, 2015, 40 :1-25
[3]   Automatic Detection of Floating-Point Exceptions [J].
Barr, Earl T. ;
Thanh Vo ;
Vu Le ;
Su, Zhendong .
ACM SIGPLAN NOTICES, 2013, 48 (01) :549-560
[4]  
Barrett Clark, 2011, Computer Aided Verification. Proceedings 23rd International Conference, CAV 2011, P171, DOI 10.1007/978-3-642-22110-1_14
[5]  
Barrett C., 2010, The satisfiability modulo theories library (SMT-LIB)
[6]  
Ben Khadra MA, 2017, PROCEEDINGS OF THE 17TH CONFERENCE ON FORMAL METHODS IN COMPUTER AIDED DESIGN (FMCAD 2017), P11, DOI 10.23919/FMCAD.2017.8102235
[7]  
Bjorner N., 2015, 20 INT C LOG PROGR A, V35, P15
[8]   A SIMPLE UNPREDICTABLE PSEUDORANDOM NUMBER GENERATOR [J].
BLUM, L ;
BLUM, M ;
SHUB, M .
SIAM JOURNAL ON COMPUTING, 1986, 15 (02) :364-383
[9]   Building Better Bit-Blasting for Floating-Point Problems [J].
Brain, Martin ;
Schanda, Florian ;
Sun, Youcheng .
TOOLS AND ALGORITHMS FOR THE CONSTRUCTION AND ANALYSIS OF SYSTEMS, PT I, 2019, 11427 :79-98
[10]   An Automatable Formal Semantics for IEEE-754 Floating-Point Arithmetic [J].
Brain, Martin ;
Tinelli, Cesare ;
Rummer, Philipp ;
Wahl, Thomas .
IEEE 22ND SYMPOSIUM ON COMPUTER ARITHMETIC ARITH 22, 2015, :160-167