Charge transport in the electrospun nanofiber composite membrane's three-dimensional fibrous structure

被引:13
作者
DeGostin, Matthew B. [1 ]
Peracchio, Aldo A. [1 ]
Myles, Timothy D. [2 ]
Cassenti, Brice N. [1 ]
Chiu, Wilson K. S. [1 ]
机构
[1] Univ Connecticut, Dept Mech Engn, 191 Auditorium Rd, Storrs, CT 06269 USA
[2] Univ Connecticut, Ctr Clean Energy Engn, 44 Weaver Rd,Unit 5233, Storrs, CT 06269 USA
关键词
Electrospun membrane; Charge transport; Fiber network model; Polymer electrolyte membrane; Fuel cell; Resistor network model; ANION-EXCHANGE MEMBRANES; FUEL-CELLS; GEOMETRIC SENSITIVITY; CONDUCTING MEMBRANES; ION-EXCHANGE; NAFION; HYDROXIDE; MODELS; JETS;
D O I
10.1016/j.jpowsour.2015.12.116
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a Fiber Network (FN) ion transport model is developed to simulate the three-dimensional fibrous microstructural morphology that results from the electrospinning membrane fabrication process. This model is able to approximate fiber layering within a membrane as well as membrane swelling due to water uptake. The discrete random fiber networks representing membranes are converted to resistor networks and solved for current flow and ionic conductivity. Model predictions are validated by comparison with experimental conductivity data from electrospun anion exchange membranes (AEM) and proton exchange membranes (PEM) for fuel cells as well as existing theories. The model is capable of predicting in-plane and thru-plane conductivity and takes into account detailed membrane characteristics, such as volume fraction, fiber diameter, fiber conductivity, and membrane layering, and as such may be used as a tool for advanced electrode design. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:538 / 551
页数:14
相关论文
共 35 条
[1]   Polymer nanofibers and nanotubes: Charge transport and device applications [J].
Aleshin, AN .
ADVANCED MATERIALS, 2006, 18 (01) :17-27
[2]   Morphological Control of Electrospun Nafion Nanofiber Mats [J].
Ballengee, J. B. ;
Pintauro, P. N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) :B568-B572
[3]   Composite Fuel Cell Membranes from Dual-Nanofiber Electrospun Mats [J].
Ballengee, Jason B. ;
Pintauro, Peter N. .
MACROMOLECULES, 2011, 44 (18) :7307-7314
[4]   Review of proton exchange membrane fuel cell models [J].
Biyikoglu, A .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2005, 30 (11) :1181-1212
[5]   Analytical solutions for extended surface electrochemical fin models [J].
Cassenti, Brice N. ;
Nelson, George J. ;
DeGostin, Matthew B. ;
Peracchio, Aldo A. ;
Chiu, Wilson K. S. .
JOURNAL OF POWER SOURCES, 2014, 265 :282-290
[6]   Nano-fibrous sulfonated poly(ether ether ketone) membrane for selective electro-transport of ions [J].
Chakrabarty, Tina ;
Kumar, Mahendra ;
Rajesh, K. P. ;
Shahi, Vinod K. ;
Natarajan, T. S. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2010, 75 (02) :174-182
[7]   Review and comparison of approaches to proton exchange membrane fuel cell modeling [J].
Cheddie, D ;
Munroe, N .
JOURNAL OF POWER SOURCES, 2005, 147 (1-2) :72-84
[8]   Electrospinning and solution properties of Nafion and poly(acrylic acid) [J].
Chen, Hong ;
Snyder, Joshua D. ;
Elabd, Yossef A. .
MACROMOLECULES, 2008, 41 (01) :128-135
[9]   Nanofiber network ion-exchange membranes [J].
Choi, Jonghyun ;
Lee, Kyung Min ;
Wycisk, Ryszard ;
Pintauro, Peter N. ;
Mather, Patrick T. .
MACROMOLECULES, 2008, 41 (13) :4569-4572
[10]   Nanofiber composite membranes with low equivalent weight perfluorosulfonic acid polymers [J].
Choi, Jonghyun ;
Lee, Kyung Min ;
Wycisk, Ryszard ;
Pintauro, Peter N. ;
Mather, Patrick T. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (30) :6282-6290