Polymer Schwarzschild black hole: An effective metric

被引:80
作者
Ben Achour, J. [1 ]
Lamy, F. [2 ]
Liu, H. [2 ,3 ,4 ,5 ]
Noui, K. [2 ,5 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Univ Paris Diderot Paris 7, CNRS, Lab Astroparticule & Cosmol, F-75013 Paris, France
[3] Univ Aix Marseille, Ctr Phys Theor, F-13288 Marseille, France
[4] Univ Toulon & Var, CNRS, F-13288 Marseille, France
[5] Univ Tours, Univ Orleans, Inst Denis Poisson, CNRS, F-37200 Tours, France
关键词
D O I
10.1209/0295-5075/123/20006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the modified Einstein equations obtained in the framework of effective spherically symmetric polymer models inspired by loop quantum gravity. When one takes into account the anomaly free pointwise holonomy quantum corrections, the modification of Einstein equations is parametrized by a function f(x) of one phase space variable. We solve explicitly these equations for a static interior black-hole geometry and find the effective metric describing the trapped region, inside the black hole, for any f(x). This general resolution allows to take into account a standard ambiguity inherent to the polymer regularization: namely the choice of the spin j labelling the SU(2)-representation of the holonomy corrections. When j = 1/2, the function f(x) is the usual sine function used in the polymer litterature. For this simple case, the effective exterior metric remains the classical Schwarzschild's one but acquires modifications inside the hole. The interior metric describes a regular trapped region and presents strong similarities with the Reissner-Nordstrom metric, with a new inner horizon generated by quantum effects. We discuss the gluing of our interior solution to the exterior Schwarzschild metric and the challenge to extend the solution outside the trapped region due to covariance requirement. By starting from the anomaly free polymer regularization for inhomogeneous spherically symmetric geometry, and then reducing to the homogeneous interior problem, we provide an alternative treatment to existing polymer interior black-hole models which focus directly on the interior geometry, ignoring the covariance issue when introducing the polymer regularization. Copyright (C) EPLA, 2018
引用
收藏
页数:6
相关论文
共 23 条
[1]   Particle creation by loop black holes [J].
Alesci, Emanuele ;
Modesto, Leonardo .
GENERAL RELATIVITY AND GRAVITATION, 2014, 46 (02) :1-28
[2]   Loop quantum cosmology: a status report [J].
Ashtekar, Abhay ;
Singh, Parampreet .
CLASSICAL AND QUANTUM GRAVITY, 2011, 28 (21)
[3]   Anomaly-free cosmological perturbations in effective canonical quantum gravity [J].
Barrau, Aurelien ;
Bojowald, Martin ;
Calcagni, Gianluca ;
Grain, Julien ;
Kagan, Mikhail .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2015, (05)
[4]   Non-singular black holes and the limiting curvature mechanism: a Hamiltonian perspective [J].
Ben Achour, J. ;
Lamy, F. ;
Liu, H. ;
Noui, K. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (05)
[5]   Covariance in self-dual inhomogeneous models of effective quantum geometry: Spherical symmetry and Gowdy systems [J].
Ben Achour, Jibril ;
Brahma, Suddhasattwa .
PHYSICAL REVIEW D, 2018, 97 (12)
[6]   Spherically symmetric sector of self-dual Ashtekar gravity coupled to matter: Anomaly-free algebra of constraints with holonomy corrections [J].
Ben Achour, Jibril ;
Brahma, Suddhasattwa ;
Marciano, Antonino .
PHYSICAL REVIEW D, 2017, 96 (02)
[7]   New Hamiltonians for loop quantum cosmology with arbitrary spin representations [J].
Ben Achour, Jibril ;
Brahma, Suddhasattwa ;
Geiller, Marc .
PHYSICAL REVIEW D, 2017, 95 (08)
[8]  
Bojowald M., ARXIV161008850
[9]  
BOJOWALD M, ARXIV180301119
[10]   Hypersurface-deformation algebroids and effective spacetime models [J].
Bojowald, Martin ;
Buyukcam, Umut ;
Brahma, Suddhasattwa ;
D'Ambrosio, Fabio .
PHYSICAL REVIEW D, 2016, 94 (10)