Ground state sign-changing solutions for a class of nonlinear fractional Schrodinger-Poisson system in <mml:msup>R3</mml:msup>

被引:0
作者
Ji, Chao [1 ]
机构
[1] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
中国博士后科学基金;
关键词
Fractional Schrodinger-Poisson system; Sign-changing solutions; Constraint variational method; Quantitative deformation lemma; 35J61; 58E30; BOUND-STATES; EQUATIONS; EXISTENCE; ATOMS;
D O I
10.1007/s10231-019-00831-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with the existence of the least energy sign-changing solutions for the following fractional Schrodinger-Poisson system: disp-formula id="Equ36"mml:mtable mml:mtrmml:mtd columnalign="right"mml:mfenced open="{"mml:mtable mml:mtr mml:mtd mml:mtd mml:mtd columnalign="left(-Delta )su+V(x)u+lambda phi (x)u=f(x,u),mml:mspace width="1em"mml:mspace mml:mtd mml:mtd columnalign="right"in mml:mspace width="0.166667em" mml:mspace mml:mspace width="4pt"mml:mspace R3,mml:mtd mml:mtr mml:mtrmml:mtd columnalign="right mml:mtd mml:mtd columnalign="left"(-Delta )t phi =u2,mml:mtd mml:mtd columnalign="right in mml:mspace width="0.166667em" mml:mspace mml:mspace width="4pt mml:mspace>R3,mml:mtd mml:mtr mml:mtable mml:mfenced mml:mtd mml:mtr mml:mtable disp-formula>where lambda is an element of R+ is a parameter, s,t is an element of (0,1) and 4s+2t>3, (-Delta )s stands for the fractional Laplacian. By constraint variational method and quantitative deformation lemma, we prove that the above problem has one least energy sign-changing solution. Moreover, for any lambda 0, we show that the energy of the least energy sign-changing solutions is strictly larger than two times the ground state energy. Finally, we consider lambda as a parameter and study the convergence property of the least energy sign-changing solutions as lambda SE arrow 0.
引用
收藏
页码:1563 / 1579
页数:17
相关论文
共 26 条
[1]  
[Anonymous], 2004, CHAPMAN HALL CRC FIN
[2]   EXISTENCE AND MULTIPLICITY RESULTS FOR SOME SUPERLINEAR ELLIPTIC PROBLEMS ON R(N) [J].
BARTSCH, T ;
WANG, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (9-10) :1725-1741
[3]   Solitary waves of the nonlinear Klein-Gordon equation coupled with the Maxwell equations [J].
Benci, V ;
Fortunato, D .
REVIEWS IN MATHEMATICAL PHYSICS, 2002, 14 (04) :409-420
[4]  
Benci V., 1998, Topol Methods Nonlinear Anal, V11, P283, DOI DOI 10.12775/TMNA.1998.019
[5]   THE THOMAS-FERMI-VONWEIZSACKER THEORY OF ATOMS AND MOLECULES [J].
BENGURIA, R ;
BREZIS, H ;
LIEB, EH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (02) :167-180
[6]   Ground state solutions of scalar field fractional Schrodinger equations [J].
Bisci, Giovanni Molica ;
Radulescu, Vicentiu D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2985-3008
[7]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]   Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity [J].
Chang, X. ;
Wang, Z-Q .
NONLINEARITY, 2013, 26 (02) :479-494
[10]  
Ianni I, 2008, ADV NONLINEAR STUD, V8, P573