Probing free-space quantum channels with laboratory-based experiments

被引:19
作者
Bohmann, M. [1 ]
Kruse, R. [2 ]
Sperling, J. [3 ]
Silberhorn, C. [2 ]
Vogel, W. [1 ]
机构
[1] Univ Rostock, Inst Phys, Arbeitsgrp Theoret Quantenopt, D-18051 Rostock, Germany
[2] Univ Paderborn, Integrated Quantum Opt Appl Phys, D-33098 Paderborn, Germany
[3] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
关键词
ANGULAR-MOMENTUM; ENTANGLEMENT; STATES; TELEPORTATION;
D O I
10.1103/PhysRevA.95.063801
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Atmospheric channels are a promising candidate to establish secure quantum communication on a global scale. However, due to their turbulent nature, it is crucial to understand the impact of the atmosphere on the quantum properties of light and examine it experimentally. In this paper, we introduce a method to probe atmospheric free-space links with quantum light on a laboratory scale. In contrast to previous works, our method models arbitrary intensity losses caused by turbulence to emulate general atmospheric conditions. This allows us to characterize turbulent quantum channels in a well-controlled manner. To implement this technique, we perform a series of measurements with different constant attenuations and simulate the fluctuating losses by combining the obtained data. We directly test the proposed method with an on-chip source of nonclassical light and a time-bin-multiplexed detection system. With the obtained data, we characterize the nonclassicality of the generated states for different atmospheric noise models and analyze a postselection protocol. This general technique in atmospheric quantum optics allows for studying turbulent quantum channels and predicting their properties for future applications.
引用
收藏
页数:9
相关论文
共 52 条
  • [1] Achilles D, 2004, J MOD OPTIC, V51, P1499, DOI 10.1080/09500340410001670875
  • [2] Fiber-assisted detection with photon number resolution
    Achilles, D
    Silberhorn, C
    Sliwa, C
    Banaszek, K
    Walmsley, IA
    [J]. OPTICS LETTERS, 2003, 28 (23) : 2387 - 2389
  • [3] Orbital and intrinsic angular momentum of single photons and entangled pairs of photons generated by parametric down-conversion
    Arnaut, HH
    Barbosa, GA
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (02) : 286 - 289
  • [4] Direct calibration of click-counting detectors
    Bohmann, M.
    Kruse, R.
    Sperling, J.
    Silberhorn, C.
    Vogel, W.
    [J]. PHYSICAL REVIEW A, 2017, 95 (03)
  • [5] Higher-order nonclassical effects in fluctuating-loss channels
    Bohmann, M.
    Sperling, J.
    Semenov, A. A.
    Vogel, W.
    [J]. PHYSICAL REVIEW A, 2017, 95 (01)
  • [6] Gaussian entanglement in the turbulent atmosphere
    Bohmann, M.
    Semenov, A. A.
    Sperling, J.
    Vogel, W.
    [J]. PHYSICAL REVIEW A, 2016, 94 (01)
  • [7] Entanglement and phase properties of noisy NOON states
    Bohmann, M.
    Sperling, J.
    Vogel, W.
    [J]. PHYSICAL REVIEW A, 2015, 91 (04):
  • [8] A comprehensive design and performance analysis of low Earth orbit satellite quantum communication
    Bourgoin, J-P
    Meyer-Scott, E.
    Higgins, B. L.
    Helou, B.
    Erven, C.
    Huebel, H.
    Kumar, B.
    Hudson, D.
    D'Souza, I.
    Girard, R.
    Laflamme, R.
    Jennewein, T.
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [9] Free-space quantum key distribution to a moving receiver
    Bourgoin, Jean-Philippe
    Higgins, Brendon L.
    Gigov, Nikolay
    Holloway, Catherine
    Pugh, Christopher J.
    Kaiser, Sarah
    Cranmer, Miles
    Jennewein, Thomas
    [J]. OPTICS EXPRESS, 2015, 23 (26): : 33437 - 33447
  • [10] Experimental quantum key distribution with simulated ground-to-satellite photon losses and processing limitations
    Bourgoin, Jean-Philippe
    Gigov, Nikolay
    Higgins, Brendon L.
    Yan, Zhizhong
    Meyer-Scott, Evan
    Khandani, Amir K.
    Luetkenhaus, Norbert
    Jennewein, Thomas
    [J]. PHYSICAL REVIEW A, 2015, 92 (05)