On Automorphism Groups of Symmetric Cayley Graphs of Finite Simple Groups with Valency Six

被引:1
作者
Fang, Xingui [1 ]
Niu, Pu
Wang, Jie
机构
[1] Peking Univ, LAMA, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
finite non-abelian simple group; Cayley graph; symmetric graph; automorphism group; PRIMITIVE PERMUTATION-GROUPS; SUBGROUPS;
D O I
10.1142/S1005386710000179
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate the full automorphism groups of six-valent symmetric Cayley graphs Gamma = Cay(G, S) for finite non-abelian simple groups C. We prove that for most finite non-abelian simple groups G, if Gamma contains no cycle of length 4, then Ant Gamma = G . Aut(G, S), where Aut(G, S) <= S(6).
引用
收藏
页码:161 / 172
页数:12
相关论文
共 17 条
[1]  
BIGGES N, 1993, ALGEBRAIC GRAPH THEO
[2]  
Conway J. H., 1985, ATLAS of Finite Groups
[3]   On edge-transitive Cayley graphs of valency four [J].
Fang, XG ;
Li, CH ;
Xu, MY .
EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) :1107-1116
[4]   On the automorphism groups of Cayley graphs of finite simple groups [J].
Fang, XG ;
Praeger, CE ;
Wang, J .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2002, 66 :563-578
[5]   Finite two-arc transitive graphs admitting a Ree simple group [J].
Fang, XG ;
Praeger, CE .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) :3755-3769
[6]   Finite two-arc transitive graphs admitting a Suzuki simple group [J].
Fang, XG ;
Praeger, CE .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) :3727-3754
[7]   On graphs admitting arc-transitive actions of almost simple groups [J].
Fang, XG ;
Praeger, CE .
JOURNAL OF ALGEBRA, 1998, 205 (01) :37-52
[8]  
FANG XG, LOCALLY PRIMIT UNPUB
[9]   ON THE FULL AUTOMORPHISM GROUP OF A GRAPH [J].
GODSIL, CD .
COMBINATORICA, 1981, 1 (03) :243-256
[10]   SUBGROUPS OF PRIME POWER INDEX IN A SIMPLE-GROUP [J].
GURALNICK, RM .
JOURNAL OF ALGEBRA, 1983, 81 (02) :304-311