Three-Dimensional Ordered Mesoporous MnO2-Supported Ag Nanoparticles for Catalytic Removal of Formaldehyde

被引:163
作者
Bai, Bingyang [1 ,2 ]
Qiao, Qi [1 ,2 ]
Arandiyan, Hamidreza [3 ]
Li, Junhua [4 ]
Hao, Jiming [4 ]
机构
[1] Chinese Res Inst Environm Sci, State Key Lab Environm Criteria & Risk Assessment, Beijing 100012, Peoples R China
[2] Chinese Res Inst Environm Sci, Minist Environm Protect, Key Lab Ecoind, Beijing 100012, Peoples R China
[3] Univ New S Wales, Sch Chem Engn, Particles & Catalysis Res Grp, Sydney, NSW 2052, Australia
[4] Tsinghua Univ, Sch Environm, State Key Joint Lab Environm Simulat & Pollut Con, Beijing 100084, Peoples R China
关键词
LOW-TEMPERATURE OXIDATION; CO OXIDATION; PERFORMANCE; PT/TIO2; OXIDE; DECOMPOSITION; COMBUSTION; MECHANISM; BETA-MNO2; SINGLE;
D O I
10.1021/acs.est.5b03342
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Three-dimensional (3D) ordered mesoporous Ag/MnO2 catalyst was prepared by impregnation method based on 3D-MnO2 and used for catalytic oxidation of HCHO. Ag nanoparticles are uniformly distributed on the polycrystalline wall of 3D-MnO2. The addition of Ag does not change the 3D ordered mesoporous structure of the Ag/MnO2, but does reduce the pore size and surface area. Ag nanoparticles provide sufficient active site for the oxidation reaction of HCHO, and Ag (111) crystal facets in the Ag/MnO2 are active faces. The 8.9% Ag/MnO2 catalyst shows a higher normalized rate (10.1 nmol.s(-1).m(-1) at 110 degrees C) and TOF (0.007 s(-1) at 110 degrees C) under 1300 ppm of HCHO and 150 000 h(-1) of GHSV, and its apparent activation energy of the reaction is the lowest (39.1 kJ/mol). More Ag active sites, higher low-temperature reducibility, more abundant surface lattice oxygen species, oxygen vacancies, and lattice defects generated from interaction Ag with MnO2 are responsible for the excellent catalytic performance of HCHO oxidation on the 8.9% Ag/MnO2 catalyst. The 8.9% Ag/MnO2 catalyst remained highly active and stable under space velocity increasing from 60 000 to 150 000 h(-1), under initial HCHO concentration increasing from 500 to 1300 ppm, and under the presence of humidity, respectively.
引用
收藏
页码:2635 / 2640
页数:6
相关论文
共 48 条
[1]   Catalytic oxidation of formaldehyde over different silica supported platinum catalysts [J].
An, Nihong ;
Zhang, Wenlong ;
Yuan, Xiaoling ;
Pan, Bo ;
Liu, Gang ;
Jia, Mingjun ;
Yan, Wenfu ;
Zhang, Wenxiang .
CHEMICAL ENGINEERING JOURNAL, 2013, 215 :1-6
[2]   Complete oxidation of formaldehyde at ambient temperature over supported Pt/Fe2O3 catalysts prepared by colloid-deposition method [J].
An, Nihong ;
Yu, Qiushi ;
Liu, Gang ;
Li, Suying ;
Jia, Mingjun ;
Zhang, Wenxiang .
JOURNAL OF HAZARDOUS MATERIALS, 2011, 186 (2-3) :1392-1397
[3]   Pt Nanoparticles Embedded in Colloidal Crystal Template Derived 3D Ordered Macroporous Ce0.6Zr0.3Y0.1O2: Highly Efficient Catalysts for Methane Combustion [J].
Arandiyan, Hamidreza ;
Dai, Hongxing ;
Ji, Kemeng ;
Sun, Hongyu ;
Li, Junhua .
ACS CATALYSIS, 2015, 5 (03) :1781-1793
[4]   Three-Dimensionally Ordered Macroporous La0.6Sr0.4MnO3 Supported Ag Nanoparticles for the Combustion of Methane [J].
Arandiyan, Hamidreza ;
Dai, Hongxing ;
Deng, Jiguang ;
Wang, Yuan ;
Sun, Hongyu ;
Xie, Shaohua ;
Bai, Bingyang ;
Liu, Yuxi ;
Ji, Kemeng ;
Li, Junhua .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (27) :14913-14928
[5]  
Bai B., 2015, CHIN J CATAL
[6]   1D-MnO2, 2D-MnO2 and 3D-MnO2 for low-temperature oxidation of ethanol [J].
Bai, Bingyang ;
Li, Junhua ;
Hao, Jiming .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2015, 164 :241-250
[7]   Positive Effects of K+ Ions on Three-Dimensional Mesoporous Ag/Co3O4 Catalyst for HCHO Oxidation [J].
Bai, Bingyang ;
Li, Junhua .
ACS CATALYSIS, 2014, 4 (08) :2753-2762
[8]   Comparison of the performance for oxidation of formaldehyde on nano-Co3O4, 2D-Co3O4, and 3D-Co3O4 catalysts [J].
Bai, Bingyang ;
Arandiyan, Hamidreza ;
Li, Junhua .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 142 :677-683
[9]   Effects of β-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: From molecule-ion associations to complete oxidation of formaldehyde [J].
Bai, Lei ;
Wyrwalski, Frederic ;
Lamonier, Jean-Francois ;
Khodakov, Andrei Y. ;
Monflier, Eric ;
Ponchel, Anne .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 138 :381-390
[10]   Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde [J].
Chen, Hongmin ;
He, Junhui ;
Zhang, Changbin ;
He, Hong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (49) :18033-18038