Collisionless Sound in a Uniform Two-Dimensional Bose Gas

被引:41
作者
Ota, Miki [1 ,2 ]
Larcher, Fabrizio [1 ,2 ,3 ]
Dalfovo, Franco [1 ,2 ]
Pitaevskii, Lev [1 ,2 ,4 ]
Proukakis, Nick P. [3 ]
Stringari, Sandro [1 ,2 ]
机构
[1] Univ Trento, IINO, CNR BEC Ctr, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, I-38123 Trento, Italy
[3] Newcastle Univ, Joint Quantum Ctr Durham Newcastle, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[4] Russian Acad Sci, Kapitza Inst Phys Problems, Kosygina 2, Moscow 119334, Russia
基金
欧盟地平线“2020”;
关键词
2ND SOUND; DYNAMICS;
D O I
10.1103/PhysRevLett.121.145302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using linear response theory within the random phase approximation, we investigate the propagation of sound in a uniform two dimensional (2D) Bose gas in the collisionless regime. We show that the sudden removal of a static density perturbation produces a damped oscillatory behavior revealing that sound can propagate also in the absence of collisions, due to mean-field interaction effects. We provide explicit results for the sound velocity and damping as a function of temperature, pointing out the crucial role played by Landau damping. We support our predictions by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii equation. The results are consistent with the recent experimental observation of sound in a weakly interacting 2D Bose gas both below and above the superfluid Berezinskii-Kosterlitz-Thouless transition.
引用
收藏
页数:5
相关论文
共 40 条
[1]   Propagation of sound in a Bose-Einstein condensate [J].
Andrews, MR ;
Kurn, DM ;
Miesner, HJ ;
Durfee, DS ;
Townsend, CG ;
Inouye, S ;
Ketterle, W .
PHYSICAL REVIEW LETTERS, 1997, 79 (04) :553-556
[2]  
[Anonymous], 2002, BOSE EINSTEIN CONDEN
[3]   Propagation of second sound in a superfluid Fermi gas in the unitary limit [J].
Arahata, Emiko ;
Nikuni, Tetsuro .
PHYSICAL REVIEW A, 2009, 80 (04)
[4]  
BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
[5]   Quantitative test of the mean-field description of a trapped two-dimensional Bose gas [J].
Bisset, R. N. ;
Blakie, P. B. .
PHYSICAL REVIEW A, 2009, 80 (04)
[6]   Quasicondensation and coherence in the quasi-two-dimensional trapped Bose gas [J].
Bisset, R. N. ;
Davis, M. J. ;
Simula, T. P. ;
Blakie, P. B. .
PHYSICAL REVIEW A, 2009, 79 (03)
[7]   Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques [J].
Blakie, P. B. ;
Bradley, A. S. ;
Davis, M. J. ;
Ballagh, R. J. ;
Gardiner, C. W. .
ADVANCES IN PHYSICS, 2008, 57 (05) :363-455
[8]   Damping in 2D and 3D dilute Bose gases [J].
Chung, Ming-Chiang ;
Bhattacherjee, Aranya B. .
NEW JOURNAL OF PHYSICS, 2009, 11
[9]   Simulations of bose fields at finite temperature [J].
Davis, MJ ;
Morgan, SA ;
Burnett, K .
PHYSICAL REVIEW LETTERS, 2001, 87 (16) :1-160402
[10]   XMDS2: Fast, scalable simulation of coupled stochastic partial differential equations [J].
Dennis, Graham R. ;
Hope, Joseph J. ;
Johnsson, Mattias T. .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (01) :201-208