Gorenstein stable surfaces with KX2=1 and pg > 0

被引:15
作者
Franciosi, Marco [1 ]
Pardini, Rita [1 ]
Rollenske, Soenke [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo B Pontecorvo 5, I-56127 Pisa, Italy
[2] Philipps Univ Marburg, FB 12,Hans Meerwein Str 6, D-35032 Marburg, Germany
关键词
Stable Gorenstein surface; moduli space of stable surfaces; GENERAL TYPE; MODULI; CURVES; COVERS;
D O I
10.1002/mana.201600090
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider Gorenstein stable surfaces with K-X(2) = 1 and positive geometric genus. Extending classical results, we show that such surfaces admit a simple description as weighted complete intersection. We exhibit a wealth of surfaces of all possible Kodaira dimensions that occur as normalisations of Gorenstein stable surfaces with K-X(2) = 1; for p(g) = 2 this leads to a rough stratification of the moduli space. Explicit non-Gorenstein examples show that we need further techniques to understand all possible degenerations.
引用
收藏
页码:794 / 814
页数:21
相关论文
共 42 条
[1]   Non-normal abelian covers [J].
Alexeev, Valery ;
Pardini, Rita .
COMPOSITIO MATHEMATICA, 2012, 148 (04) :1051-1084
[2]  
[Anonymous], 2004, ERGEBNISSE MATH IHRE
[3]  
[Anonymous], MACAULAY2 SOFTWARE S
[4]  
[Anonymous], 2013, Cambridge Tracts in Mathematics
[5]  
[Anonymous], UNPUB
[6]  
Arbarello E., 1985, GRUNDLEHREN MATH WIS, V1
[7]   HIERARCHY OF 1-MODULAR SINGULARITIES [J].
BRIESKORN, E .
MANUSCRIPTA MATHEMATICA, 1979, 27 (02) :183-219
[8]  
Bruns Winfried, 1993, Cambridge Studies in Advanced Mathematics, V39
[9]  
Casnati G., 1996, J. Algebraic Geom, V5, P439
[10]  
CATANESE F, 1980, COMPOS MATH, V41, P401