High-repetition-rate (≥ kHz) targets and optics from liquid microjets for high-intensity laser-plasma interactions

被引:48
作者
George, K. M. [1 ]
Morrison, J. T. [1 ]
Feister, S. [2 ,3 ]
Ngirmang, G. [4 ,5 ]
Smith, J. R. [6 ]
Klim, A. J. [6 ]
Snyder, J. [7 ]
Austin, D. [6 ]
Erbsen, W. [1 ]
Frische, K. D. [1 ]
Nees, J. [8 ]
Orban, C. [6 ]
Chowdhury, E. A. [6 ,9 ]
Roquemore, W. M. [5 ]
机构
[1] Innovat Sci Solut Inc, 7610 McEwen Rd, Dayton, OH 45459 USA
[2] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[3] Calif State Univ Channel Isl, Comp Sci Program & Appl Phys Program, Camarillo, CA 93012 USA
[4] Natl Acad Sci Engn & Med, Washington, DC 20001 USA
[5] Air Force Res Lab, Wright Patterson AFB, OH 45433 USA
[6] Ohio State Univ, Dept Phys, 174 W 18th Ave, Columbus, OH 43210 USA
[7] Miami Univ, Dept Math & Phys Sci, Hamilton, OH 45011 USA
[8] Univ Michigan, Ctr Ultrafast Opt Sci, Ann Arbor, MI 48109 USA
[9] Intense Energy Solut LLC, Plain City, OH 43064 USA
来源
HIGH POWER LASER SCIENCE AND ENGINEERING | 2019年 / 7卷
关键词
high intensity; high repetition rate; laser-plasma interaction; liquid droplet; liquid microjet; liquid sheet; plasma mirror; target; THICKNESS DISTRIBUTION; NONLINEAR PROPAGATION; X-RAYS; PULSES; IONS; ACCELERATION; MIRRORS; BEAMS; REFLECTIVITY; ENTRAINMENT;
D O I
10.1017/hpl.2019.35
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
High-intensity laser-plasma interactions produce a wide array of energetic particles and beams with promising applications. Unfortunately, the high repetition rate and high average power requirements for many applications are not satisfied by the lasers, optics, targets, and diagnostics currently employed. Here, we aim to address the need for high-repetition-rate targets and optics through the use of liquids. A novel nozzle assembly is used to generate high-velocity, laminar-flowing liquid microjets which are compatible with a low-vacuum environment, generate little to no debris, and exhibit precise positional and dimensional tolerances. Jets, droplets, submicron-thick sheets, and other exotic configurations are characterized with pump-probe shadowgraphy to evaluate their use as targets. To demonstrate a high-repetition-rate, consumable, liquid optical element, we present a plasma mirror created by a submicron-thick liquid sheet. This plasma mirror provides etalon-like anti-reflection properties in the low field of 0.1% and high reflectivity as a plasma, 69%, at a repetition rate of 1 kHz. Practical considerations of fluid compatibility, in-vacuum operation, and estimates of maximum repetition rate are addressed. The targets and optics presented here demonstrate a potential technique for enabling the operation of laser-plasma interactions at high repetition rates.
引用
收藏
页数:21
相关论文
共 143 条
[1]  
Ammann M., 2018, PHYS CHEM GAS LIQUID, P135
[2]   PREPULSE SUPPRESSION FOR HIGH-ENERGY ULTRASHORT PULSES USING SELF-INDUCED PLASMA SHUTTERING FROM A FLUID TARGET [J].
BACKUS, S ;
KAPTEYN, HC ;
MURNANE, MM ;
GOLD, DM ;
NATHEL, H ;
WHITE, W .
OPTICS LETTERS, 1993, 18 (02) :134-136
[3]  
Bartal T, 2012, NAT PHYS, V8, P139, DOI [10.1038/nphys2153, 10.1038/NPHYS2153]
[4]   Fast-electron transport in high-intensity short-pulse laser-solid experiments [J].
Bell, AR ;
Davies, JR ;
Guerin, S ;
Ruhl, H .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (05) :653-659
[5]   GAS ENTRAINMENT BY PLUNGING LIQUID JETS [J].
BIN, AK .
CHEMICAL ENGINEERING SCIENCE, 1993, 48 (21) :3585-3630
[6]   Scattering data for modelling positron tracks in gaseous and liquid water [J].
Blanco, F. ;
Roldan, A. M. ;
Krupa, K. ;
McEachran, R. P. ;
White, R. D. ;
Marjanovic, S. ;
Petrovic, Z. Lj ;
Brunger, M. J. ;
Machacek, J. R. ;
Buckman, S. J. ;
Sullivan, J. P. ;
Chiari, L. ;
Limao-Vieira, P. ;
Garcia, G. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (14)
[7]   EFFECTS OF NONLINEAR PROPAGATION ON LASER FOCUSING PROPERTIES [J].
BLISS, ES ;
HUNT, JT ;
RENARD, PA ;
SOMMARGREN, GE ;
WEAVER, HJ .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1976, 12 (07) :402-406
[8]   Multi-MeV proton source investigations in ultraintense laser-foil interactions [J].
Borghesi, M ;
Mackinnon, AJ ;
Campbell, DH ;
Hicks, DG ;
Kar, S ;
Patel, PK ;
Price, D ;
Romagnani, L ;
Schiavi, A ;
Willi, O .
PHYSICAL REVIEW LETTERS, 2004, 92 (05) :4-550034
[9]  
Borot A, 2012, NAT PHYS, V8, P416, DOI [10.1038/NPHYS2269, 10.1038/nphys2269]
[10]   Oncological hadrontherapy with laser ion accelerators [J].
Bulanov, SV ;
Esirkepov, TZ ;
Khoroshkov, VS ;
Kunetsov, AV ;
Pegoraro, F .
PHYSICS LETTERS A, 2002, 299 (2-3) :240-247