Casting inorganic structures with DNA molds

被引:262
作者
Sun, Wei [1 ,2 ]
Boulais, Etienne [3 ]
Hakobyan, Yera [3 ]
Wang, Wei Li [1 ,2 ]
Guan, Amy [1 ]
Bathe, Mark [3 ]
Yin, Peng [1 ,2 ]
机构
[1] Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
[3] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
ENERGY-LOSS SPECTROSCOPY; SINGLE-STRANDED-DNA; NANOSCALE SHAPES; PLASMONIC NANOSTRUCTURES; NUCLEIC-ACID; FOLDING DNA; NANOPARTICLES; GOLD; ORIGAMI; GROWTH;
D O I
10.1126/science.1258361
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We report a general strategy for designing and synthesizing inorganic nanostructures with arbitrarily prescribed three-dimensional shapes. Computationally designed DNA strands self-assemble into a stiff "nanomold" that contains a user-specified three-dimensional cavity and encloses a nucleating gold "seed." Under mild conditions, this seed grows into a larger cast structure that fills and thus replicates the cavity. We synthesized a variety of nanoparticles with 3-nanometer resolution: three distinct silver cuboids with three independently tunable dimensions, silver and gold nanoparticles with diverse cross sections, and composite structures with homo- and heterogeneous components. The designer equilateral silver triangular and spherical nanoparticles exhibited plasmonic properties consistent with electromagnetism-based simulations. Our framework is generalizable to more complex geometries and diverse inorganic materials, offering a range of applications in biosensing, photonics, and nanoelectronics.
引用
收藏
页码:717 / +
页数:9
相关论文
共 67 条
[1]   A finite element framework for computation of protein normal modes and mechanical response [J].
Bathe, Mark .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2008, 70 (04) :1595-1609
[2]   Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions [J].
Bealing, Clive R. ;
Baumgardner, William J. ;
Choi, Joshua J. ;
Hanrath, Tobias ;
Hennig, Richard G. .
ACS NANO, 2012, 6 (03) :2118-2127
[3]   Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles [J].
Berti, Lorenzo ;
Burley, Glenn A. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :81-87
[4]   Plasma-Mediated Nanocavitation and Photothermal Effects in Ultrafast Laser Irradiation of Gold Nanorods in Water [J].
Boulais, Etienne ;
Lachaine, Remi ;
Meunier, Michel .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (18) :9386-9396
[5]   Plasma Mediated off-Resonance Plasmonic Enhanced Ultrafast Laser-Induced Nanocavitation [J].
Boulais, Etienne ;
Lachaine, Remi ;
Meunier, Michel .
NANO LETTERS, 2012, 12 (09) :4763-4769
[6]   DNA-templated assembly and electrode attachment of a conducting silver wire [J].
Braun, E ;
Eichen, Y ;
Sivan, U ;
Ben-Yoseph, G .
NATURE, 1998, 391 (6669) :775-778
[7]   HARMONIC-ANALYSIS OF LARGE SYSTEMS .1. METHODOLOGY [J].
BROOKS, BR ;
JANEZIC, D ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1995, 16 (12) :1522-1542
[8]  
Castro CE, 2011, NAT METHODS, V8, P221, DOI [10.1038/nmeth.1570, 10.1038/NMETH.1570]
[9]   Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications [J].
Chaudhuri, Rajib Ghosh ;
Paria, Santanu .
CHEMICAL REVIEWS, 2012, 112 (04) :2373-2433
[10]   SYNTHESIS FROM DNA OF A MOLECULE WITH THE CONNECTIVITY OF A CUBE [J].
CHEN, JH ;
SEEMAN, NC .
NATURE, 1991, 350 (6319) :631-633